基于人工智能技术的无传感器电驱动速度控制器设计:比较研究

D. Kukolj , F. Kulic , E. Levi
{"title":"基于人工智能技术的无传感器电驱动速度控制器设计:比较研究","authors":"D. Kukolj ,&nbsp;F. Kulic ,&nbsp;E. Levi","doi":"10.1016/S0954-1810(00)00010-8","DOIUrl":null,"url":null,"abstract":"<div><p>The paper investigates applicability of different artificial intelligence (AI) techniques in the design of a speed controller for electric drives. A speed-sensorless drive system is considered. A controller structure consisting of a load torque observer, a speed estimator and a speed predictor is developed. Next, different AI based approaches to speed controller design are investigated. The speed controllers based on (1) feed-forward neural network, (2) neuro-fuzzy network, and (3) self-organising Takagi–Sugeno (TS) rule based model are designed. A comparative analysis of the drive behaviour with these three types of AI based speed controllers is performed. In addition, a comparison is made with respect to the drive performance obtained with a conventional optimised PI controller. A detailed simulation study of a number of transients indicates that the best performance, in terms of accuracy and computational complexity, is offered by the self-organising Takagi–Sugeno controller. The controllers are developed and tested for a plant comprising a variable-speed separately excited DC motor.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(00)00010-8","citationCount":"33","resultStr":"{\"title\":\"Design of the speed controller for sensorless electric drives based on AI techniques: a comparative study\",\"authors\":\"D. Kukolj ,&nbsp;F. Kulic ,&nbsp;E. Levi\",\"doi\":\"10.1016/S0954-1810(00)00010-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper investigates applicability of different artificial intelligence (AI) techniques in the design of a speed controller for electric drives. A speed-sensorless drive system is considered. A controller structure consisting of a load torque observer, a speed estimator and a speed predictor is developed. Next, different AI based approaches to speed controller design are investigated. The speed controllers based on (1) feed-forward neural network, (2) neuro-fuzzy network, and (3) self-organising Takagi–Sugeno (TS) rule based model are designed. A comparative analysis of the drive behaviour with these three types of AI based speed controllers is performed. In addition, a comparison is made with respect to the drive performance obtained with a conventional optimised PI controller. A detailed simulation study of a number of transients indicates that the best performance, in terms of accuracy and computational complexity, is offered by the self-organising Takagi–Sugeno controller. The controllers are developed and tested for a plant comprising a variable-speed separately excited DC motor.</p></div>\",\"PeriodicalId\":100123,\"journal\":{\"name\":\"Artificial Intelligence in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0954-1810(00)00010-8\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0954181000000108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181000000108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文研究了不同的人工智能(AI)技术在电力驱动速度控制器设计中的适用性。研究了一种无速度传感器驱动系统。提出了一种由负载转矩观测器、速度估计器和速度预测器组成的控制器结构。接下来,研究了不同的基于人工智能的速度控制器设计方法。设计了基于(1)前馈神经网络、(2)神经模糊网络和(3)自组织Takagi-Sugeno (TS)规则模型的速度控制器。对这三种基于人工智能的速度控制器的驱动行为进行了比较分析。此外,还对传统优化PI控制器的驱动性能进行了比较。对多个瞬态的详细仿真研究表明,自组织Takagi-Sugeno控制器在精度和计算复杂度方面具有最佳性能。针对某厂变速分励直流电动机设计并进行了试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of the speed controller for sensorless electric drives based on AI techniques: a comparative study

The paper investigates applicability of different artificial intelligence (AI) techniques in the design of a speed controller for electric drives. A speed-sensorless drive system is considered. A controller structure consisting of a load torque observer, a speed estimator and a speed predictor is developed. Next, different AI based approaches to speed controller design are investigated. The speed controllers based on (1) feed-forward neural network, (2) neuro-fuzzy network, and (3) self-organising Takagi–Sugeno (TS) rule based model are designed. A comparative analysis of the drive behaviour with these three types of AI based speed controllers is performed. In addition, a comparison is made with respect to the drive performance obtained with a conventional optimised PI controller. A detailed simulation study of a number of transients indicates that the best performance, in terms of accuracy and computational complexity, is offered by the self-organising Takagi–Sugeno controller. The controllers are developed and tested for a plant comprising a variable-speed separately excited DC motor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信