E. A. Dmitriev, A. Borodinov, A. Maksimov, S. Rychazhkov
{"title":"使用二值图像分割算法自动检测结构","authors":"E. A. Dmitriev, A. Borodinov, A. Maksimov, S. Rychazhkov","doi":"10.18287/1613-0073-2019-2391-264-268","DOIUrl":null,"url":null,"abstract":"This article presents binary segmentation algorithms for buildings automatic detection on aerial images. There were conducted experiments among deep neural networks to find the most effective model in sense of segmentation accuracy and training time. All experiments were conducted on Moscow region images that were got from open database. As the result the optimal model was found for buildings automatic detection.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic detection of constructions using binary image segmentation algorithms\",\"authors\":\"E. A. Dmitriev, A. Borodinov, A. Maksimov, S. Rychazhkov\",\"doi\":\"10.18287/1613-0073-2019-2391-264-268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents binary segmentation algorithms for buildings automatic detection on aerial images. There were conducted experiments among deep neural networks to find the most effective model in sense of segmentation accuracy and training time. All experiments were conducted on Moscow region images that were got from open database. As the result the optimal model was found for buildings automatic detection.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2391-264-268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2391-264-268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic detection of constructions using binary image segmentation algorithms
This article presents binary segmentation algorithms for buildings automatic detection on aerial images. There were conducted experiments among deep neural networks to find the most effective model in sense of segmentation accuracy and training time. All experiments were conducted on Moscow region images that were got from open database. As the result the optimal model was found for buildings automatic detection.