{"title":"骨组织工程应用3-氨基丙基三甲氧基硅烷功能化金/银双金属纳米颗粒掺入羟基磷灰石生物陶瓷","authors":"M. Pandey, Aloke Verma, P. Pandey, R. Narayan","doi":"10.1557/s43578-023-01132-4","DOIUrl":null,"url":null,"abstract":"Despite having excellent osteoconductivity and biocompatibility, hydroxyapatite (HA) exhibits inadequate mechanical properties and bacterial susceptibility, which limits its medical applications. The present study aims to fabricate 3-aminopropyltrimethoxysilane (3-APTMS) functionalized gold (Au)-silver (Ag) nanoparticles incorporated in hydroxyapatite bioceramics to overcome this limitation. Thermogravimetric analysis (TGA), X-Ray diffraction, and scanning electron microscopy were carried out to understand the physical and chemical characteristics of the material. The maximum values of fracture toughness, hardness, compressive and flexural strength were measured for HA-10 Au/Ag NPs. Both quantitative and qualitative analyses of antibacterial behavior revealed that the adhesion of gram-positive (Staphylococcu aureus) and gram-negative (Eschericia coli) bacterial cells were reduced significantly after the incorporation of Au/Ag NPs as compared with the HA control. In addition, the effect of Au/Ag NPs incorporation on the cellular response was observed for the MG63 cell line. Both the quantitative and qualitative results indicate significantly enhanced cell proliferation with the incorporation of Au/Ag NPs as compared to HA. The addition of Au/Ag NPs in HA provides a material with appropriate mechanical, antibacterial, and cellular responses for further consideration.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"61 4 1","pages":"4157 - 4174"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bone tissue engineering application of 3-aminopropyltrimethoxysilane functionalized Au/Ag bimetallic nanoparticles incorporated hydroxyapatite bioceramic\",\"authors\":\"M. Pandey, Aloke Verma, P. Pandey, R. Narayan\",\"doi\":\"10.1557/s43578-023-01132-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite having excellent osteoconductivity and biocompatibility, hydroxyapatite (HA) exhibits inadequate mechanical properties and bacterial susceptibility, which limits its medical applications. The present study aims to fabricate 3-aminopropyltrimethoxysilane (3-APTMS) functionalized gold (Au)-silver (Ag) nanoparticles incorporated in hydroxyapatite bioceramics to overcome this limitation. Thermogravimetric analysis (TGA), X-Ray diffraction, and scanning electron microscopy were carried out to understand the physical and chemical characteristics of the material. The maximum values of fracture toughness, hardness, compressive and flexural strength were measured for HA-10 Au/Ag NPs. Both quantitative and qualitative analyses of antibacterial behavior revealed that the adhesion of gram-positive (Staphylococcu aureus) and gram-negative (Eschericia coli) bacterial cells were reduced significantly after the incorporation of Au/Ag NPs as compared with the HA control. In addition, the effect of Au/Ag NPs incorporation on the cellular response was observed for the MG63 cell line. Both the quantitative and qualitative results indicate significantly enhanced cell proliferation with the incorporation of Au/Ag NPs as compared to HA. The addition of Au/Ag NPs in HA provides a material with appropriate mechanical, antibacterial, and cellular responses for further consideration.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":\"61 4 1\",\"pages\":\"4157 - 4174\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-023-01132-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-023-01132-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Bone tissue engineering application of 3-aminopropyltrimethoxysilane functionalized Au/Ag bimetallic nanoparticles incorporated hydroxyapatite bioceramic
Despite having excellent osteoconductivity and biocompatibility, hydroxyapatite (HA) exhibits inadequate mechanical properties and bacterial susceptibility, which limits its medical applications. The present study aims to fabricate 3-aminopropyltrimethoxysilane (3-APTMS) functionalized gold (Au)-silver (Ag) nanoparticles incorporated in hydroxyapatite bioceramics to overcome this limitation. Thermogravimetric analysis (TGA), X-Ray diffraction, and scanning electron microscopy were carried out to understand the physical and chemical characteristics of the material. The maximum values of fracture toughness, hardness, compressive and flexural strength were measured for HA-10 Au/Ag NPs. Both quantitative and qualitative analyses of antibacterial behavior revealed that the adhesion of gram-positive (Staphylococcu aureus) and gram-negative (Eschericia coli) bacterial cells were reduced significantly after the incorporation of Au/Ag NPs as compared with the HA control. In addition, the effect of Au/Ag NPs incorporation on the cellular response was observed for the MG63 cell line. Both the quantitative and qualitative results indicate significantly enhanced cell proliferation with the incorporation of Au/Ag NPs as compared to HA. The addition of Au/Ag NPs in HA provides a material with appropriate mechanical, antibacterial, and cellular responses for further consideration.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.