毛刺X分布形状参数估计的极大极小缩小技术

A. N. Salman, Maymona M. Ameen, A. Abdul-Nabi
{"title":"毛刺X分布形状参数估计的极大极小缩小技术","authors":"A. N. Salman, Maymona M. Ameen, A. Abdul-Nabi","doi":"10.30526/2017.IHSCICONF.1820","DOIUrl":null,"url":null,"abstract":"The present paper concern with minimax shrinkage estimator technique in order to estimate Burr X distribution shape parameter, when prior information about the real shape obtainable as original estimate while known scale parameter. \n Derivation for Bias Ratio, Mean squared error and the Relative Efficiency equations. \n Numerical results and conclusions for the expressions mentioned above were displayed. Comparisons for proposed estimator with most recent works were made.","PeriodicalId":13236,"journal":{"name":"Ibn Al-Haitham Journal For Pure And Applied Science","volume":"42 1","pages":"484-490"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimax Shrunken Technique for Estimate Burr X Distribution Shape Parameter\",\"authors\":\"A. N. Salman, Maymona M. Ameen, A. Abdul-Nabi\",\"doi\":\"10.30526/2017.IHSCICONF.1820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper concern with minimax shrinkage estimator technique in order to estimate Burr X distribution shape parameter, when prior information about the real shape obtainable as original estimate while known scale parameter. \\n Derivation for Bias Ratio, Mean squared error and the Relative Efficiency equations. \\n Numerical results and conclusions for the expressions mentioned above were displayed. Comparisons for proposed estimator with most recent works were made.\",\"PeriodicalId\":13236,\"journal\":{\"name\":\"Ibn Al-Haitham Journal For Pure And Applied Science\",\"volume\":\"42 1\",\"pages\":\"484-490\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ibn Al-Haitham Journal For Pure And Applied Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30526/2017.IHSCICONF.1820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn Al-Haitham Journal For Pure And Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/2017.IHSCICONF.1820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在已知尺度参数的情况下,在已知实际形状的先验信息为原始估计的情况下,利用最小-最大收缩估计技术估计毛刺X分布的形状参数。偏置比、均方误差和相对效率方程的推导。给出了上述表达式的数值结果和结论。提出的估算器与最近的工作进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimax Shrunken Technique for Estimate Burr X Distribution Shape Parameter
The present paper concern with minimax shrinkage estimator technique in order to estimate Burr X distribution shape parameter, when prior information about the real shape obtainable as original estimate while known scale parameter.  Derivation for Bias Ratio, Mean squared error and the Relative Efficiency equations.  Numerical results and conclusions for the expressions mentioned above were displayed. Comparisons for proposed estimator with most recent works were made.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信