{"title":"大瓶刷鼠尾种子发芽","authors":"James A. Young, C. Clements, T. Jones","doi":"10.2307/4003819","DOIUrl":null,"url":null,"abstract":"Bottlebrush squirreltail [Elymus elymoides (Raf.) Swezey] and big squirreltail [E. multisetus (J. G. Smith) Burtt Davy] are short-lived perennial bunchgrasses found on rangelands from the Pacific Coast to the Great Plains and from Canada to Mexico. They are highly variable species with several subspecies described for bottlebrush squirreltail. In many rangeland communities, bottlebrush squirreltail is the transitional dominant native grass in secondary successional communities. There is considerable interest in using squirreltail species in rangeland restoration seedings, but problems with seed collection (disarticulating rachis) have kept seed prices very high. Recently, grass geneticists have begun to develop lines of squirreltail for release as pre-varietal germplasm. Our purpose was to compare the germination at a wide range of constant or alternating temperatures of squirreltail seeds from developmental lines and material collected from native stands. Big and bottlebrush squirreltail seeds (caryopses) germinated over a wide range of temperatures. Seeds of bottlebrush squirreltail produced from the same stand in 3 different years had remarkably similar germination temperature profiles. The greatest variation in germination among accessions occurred at very cold and cold categories of seedbed temperatures. These differences may be very significant in the establishment of seedlings in the field. There was no one temperature regime that always supported optimum germination for all of the squirreltail accessions tested. The regimes most frequently supporting optimum germination were 15/20 and 15/25 C. The seeds of big and bottlebrush squirreltail tested do not have the ecological amplitude of seeds of the competitive exotic weed cheatgrass (Bromus tectorum L.), but they come close. DOI:10.2458/azu_jrm_v56i3_young2","PeriodicalId":16918,"journal":{"name":"Journal of Range Management","volume":"42 1","pages":"277-281"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Germination of seeds of big and bottlebrush squirreltail\",\"authors\":\"James A. Young, C. Clements, T. Jones\",\"doi\":\"10.2307/4003819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bottlebrush squirreltail [Elymus elymoides (Raf.) Swezey] and big squirreltail [E. multisetus (J. G. Smith) Burtt Davy] are short-lived perennial bunchgrasses found on rangelands from the Pacific Coast to the Great Plains and from Canada to Mexico. They are highly variable species with several subspecies described for bottlebrush squirreltail. In many rangeland communities, bottlebrush squirreltail is the transitional dominant native grass in secondary successional communities. There is considerable interest in using squirreltail species in rangeland restoration seedings, but problems with seed collection (disarticulating rachis) have kept seed prices very high. Recently, grass geneticists have begun to develop lines of squirreltail for release as pre-varietal germplasm. Our purpose was to compare the germination at a wide range of constant or alternating temperatures of squirreltail seeds from developmental lines and material collected from native stands. Big and bottlebrush squirreltail seeds (caryopses) germinated over a wide range of temperatures. Seeds of bottlebrush squirreltail produced from the same stand in 3 different years had remarkably similar germination temperature profiles. The greatest variation in germination among accessions occurred at very cold and cold categories of seedbed temperatures. These differences may be very significant in the establishment of seedlings in the field. There was no one temperature regime that always supported optimum germination for all of the squirreltail accessions tested. The regimes most frequently supporting optimum germination were 15/20 and 15/25 C. The seeds of big and bottlebrush squirreltail tested do not have the ecological amplitude of seeds of the competitive exotic weed cheatgrass (Bromus tectorum L.), but they come close. DOI:10.2458/azu_jrm_v56i3_young2\",\"PeriodicalId\":16918,\"journal\":{\"name\":\"Journal of Range Management\",\"volume\":\"42 1\",\"pages\":\"277-281\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Range Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/4003819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Range Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/4003819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Germination of seeds of big and bottlebrush squirreltail
Bottlebrush squirreltail [Elymus elymoides (Raf.) Swezey] and big squirreltail [E. multisetus (J. G. Smith) Burtt Davy] are short-lived perennial bunchgrasses found on rangelands from the Pacific Coast to the Great Plains and from Canada to Mexico. They are highly variable species with several subspecies described for bottlebrush squirreltail. In many rangeland communities, bottlebrush squirreltail is the transitional dominant native grass in secondary successional communities. There is considerable interest in using squirreltail species in rangeland restoration seedings, but problems with seed collection (disarticulating rachis) have kept seed prices very high. Recently, grass geneticists have begun to develop lines of squirreltail for release as pre-varietal germplasm. Our purpose was to compare the germination at a wide range of constant or alternating temperatures of squirreltail seeds from developmental lines and material collected from native stands. Big and bottlebrush squirreltail seeds (caryopses) germinated over a wide range of temperatures. Seeds of bottlebrush squirreltail produced from the same stand in 3 different years had remarkably similar germination temperature profiles. The greatest variation in germination among accessions occurred at very cold and cold categories of seedbed temperatures. These differences may be very significant in the establishment of seedlings in the field. There was no one temperature regime that always supported optimum germination for all of the squirreltail accessions tested. The regimes most frequently supporting optimum germination were 15/20 and 15/25 C. The seeds of big and bottlebrush squirreltail tested do not have the ecological amplitude of seeds of the competitive exotic weed cheatgrass (Bromus tectorum L.), but they come close. DOI:10.2458/azu_jrm_v56i3_young2