{"title":"使用录像直接观察时,连续焦点采样时间阈值对身体活动指标的影响","authors":"Julian Martinez, J. Staudenmayer, S. Strath","doi":"10.1123/jmpb.2023-0004","DOIUrl":null,"url":null,"abstract":"Purpose: To determine differences in physical activity metrics between 1-, 5-, and 10-s direct observation (DO) time thresholds and compare annotation completion time between different time thresholds. Methods: Participants (n = 10, mean age 40.7 ± 22.3 years, five males) were video recorded for 2 hr within a free-living setting. DO videos were annotated by one experienced annotator with a priori developed Posture and Behavior schemas. The annotation order of video, time threshold, and schema used was randomized. For analysis, annotations were collapsed into posture and behavior domains. Total video time is reported. Time to code videos, overall percent agreement, and statistical bias of each posture and behavior domain for the 5-s time threshold and 10-s time threshold were compared to 1-s time threshold output. Results: 19.7 hr of DO were recorded. On average, the 1-s time threshold took 183.9 ± 34.2 min to annotate with the Posture schema and 118.8 ± 23.6 min with the Behavior schema. Under the Posture schema, the 5-s time threshold was 31.7% faster, had 91.5% agreement, and all biases were <±5 min, while the 10-s time threshold was 43.6% faster, had 89.2% agreement, and had biases ranging from −7.59 to 5.21 min. Under the Behavior schema, the 5-s time threshold was 16.0% faster, had 92.0% agreement, and had all biases <±2.1 min, while the 10-s time threshold was 27.6% faster, had 88.3% agreement, and had all biases <±3.9 min. Conclusion: Longer DO annotation time thresholds are accurate and faster but less precise for certain posture and behavior domains when compared to criterion 1-s time threshold in healthy adults.","PeriodicalId":73572,"journal":{"name":"Journal for the measurement of physical behaviour","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Continuous Focal Sampling Time Thresholds on Physical Activity Metrics When Using Video-Recorded Direct Observation\",\"authors\":\"Julian Martinez, J. Staudenmayer, S. Strath\",\"doi\":\"10.1123/jmpb.2023-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: To determine differences in physical activity metrics between 1-, 5-, and 10-s direct observation (DO) time thresholds and compare annotation completion time between different time thresholds. Methods: Participants (n = 10, mean age 40.7 ± 22.3 years, five males) were video recorded for 2 hr within a free-living setting. DO videos were annotated by one experienced annotator with a priori developed Posture and Behavior schemas. The annotation order of video, time threshold, and schema used was randomized. For analysis, annotations were collapsed into posture and behavior domains. Total video time is reported. Time to code videos, overall percent agreement, and statistical bias of each posture and behavior domain for the 5-s time threshold and 10-s time threshold were compared to 1-s time threshold output. Results: 19.7 hr of DO were recorded. On average, the 1-s time threshold took 183.9 ± 34.2 min to annotate with the Posture schema and 118.8 ± 23.6 min with the Behavior schema. Under the Posture schema, the 5-s time threshold was 31.7% faster, had 91.5% agreement, and all biases were <±5 min, while the 10-s time threshold was 43.6% faster, had 89.2% agreement, and had biases ranging from −7.59 to 5.21 min. Under the Behavior schema, the 5-s time threshold was 16.0% faster, had 92.0% agreement, and had all biases <±2.1 min, while the 10-s time threshold was 27.6% faster, had 88.3% agreement, and had all biases <±3.9 min. Conclusion: Longer DO annotation time thresholds are accurate and faster but less precise for certain posture and behavior domains when compared to criterion 1-s time threshold in healthy adults.\",\"PeriodicalId\":73572,\"journal\":{\"name\":\"Journal for the measurement of physical behaviour\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for the measurement of physical behaviour\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1123/jmpb.2023-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for the measurement of physical behaviour","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1123/jmpb.2023-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of Continuous Focal Sampling Time Thresholds on Physical Activity Metrics When Using Video-Recorded Direct Observation
Purpose: To determine differences in physical activity metrics between 1-, 5-, and 10-s direct observation (DO) time thresholds and compare annotation completion time between different time thresholds. Methods: Participants (n = 10, mean age 40.7 ± 22.3 years, five males) were video recorded for 2 hr within a free-living setting. DO videos were annotated by one experienced annotator with a priori developed Posture and Behavior schemas. The annotation order of video, time threshold, and schema used was randomized. For analysis, annotations were collapsed into posture and behavior domains. Total video time is reported. Time to code videos, overall percent agreement, and statistical bias of each posture and behavior domain for the 5-s time threshold and 10-s time threshold were compared to 1-s time threshold output. Results: 19.7 hr of DO were recorded. On average, the 1-s time threshold took 183.9 ± 34.2 min to annotate with the Posture schema and 118.8 ± 23.6 min with the Behavior schema. Under the Posture schema, the 5-s time threshold was 31.7% faster, had 91.5% agreement, and all biases were <±5 min, while the 10-s time threshold was 43.6% faster, had 89.2% agreement, and had biases ranging from −7.59 to 5.21 min. Under the Behavior schema, the 5-s time threshold was 16.0% faster, had 92.0% agreement, and had all biases <±2.1 min, while the 10-s time threshold was 27.6% faster, had 88.3% agreement, and had all biases <±3.9 min. Conclusion: Longer DO annotation time thresholds are accurate and faster but less precise for certain posture and behavior domains when compared to criterion 1-s time threshold in healthy adults.