M. Chatzidimitriou, P. Chatzivasileiou, G. Sakellariou, Kyriazidi Ma, D. Chatzidimitriou, F. Chatzopoulou, D Rousis, E Katsifa, E. Vagdatli, Lialiaris Th
{"title":"耐碳青霉烯肺炎克雷伯菌对新型抗生素的敏感性及耐药机制的分子检测——来自希腊两所三级教学医院的研究","authors":"M. Chatzidimitriou, P. Chatzivasileiou, G. Sakellariou, Kyriazidi Ma, D. Chatzidimitriou, F. Chatzopoulou, D Rousis, E Katsifa, E. Vagdatli, Lialiaris Th","doi":"10.36648/1989-8436.11.3.108","DOIUrl":null,"url":null,"abstract":"Objectives: We evaluated the carbapenem resistance mechanisms of Klebsiella pneumoniae strains isolated in two Greek tertiary teaching hospitals and their susceptibility to currently used and novel antimicrobial agents. Materials and methods: Forty-seven carbapenem resistant K. pneumoniae strains were collected in G. Papanikolaou and Ippokrateio hospital of Thessaloniki from 1/11/2016 to 5/1/2018 and 26/1/2017 to 19/4/2017 respectively. Strain identification and antimicrobial susceptibility was conducted by Vitek 2 system (Biomerieux France). Susceptibility against new antimicrobial agents was examined by disk diffusion method. Polymerase chain reaction (PCR) was used for the detection of blaKPC, blaVIM, blaNDM and blaOXA-48 genes. Results: The EDTA-boronic acid disk synergy test performed on the 24 K. pneumoniae strains from G. Papanikolaou hospital demonstrated that 8 (33.3%) yielded positive for metallo-b-lactamases (MBL) and 16 (66.6%) for K. pneumoniae carbapenemases (KPC) production. Gentamycin demonstrated the highest in vitro activity (82.6%) among the 23 K. pneumoniae strains from Ippokrateio hospital followed by colistin (73.9%) and tigecycline (69.5%). All strains from G. Papanikolaou hospital were sensitive to colistin whereas the 70.8% of them displayed susceptibility to gentamycin. Ceftazidime/ avibactam showed the highest sensitivity (76.6%) in all strains followed by eravacyclin (66.6%). The blaKPC gene was present in 30 strains (63.8%), the blaNDM in 11 (23.4%) and the blaVIM in 6 (12.8%). The blaOXA-48 gene was not detected. Conclusions: Well established antimicrobial agents such as colistin, gentamycin and tigecycline and novel antibiotics like ceftazidime/avibactam and eravacycline may be reliable options for the treatment of invasive infections caused by KPC-producing pathogens.","PeriodicalId":8142,"journal":{"name":"Archives of Clinical Microbiology","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Carbapenem-Resistant Klebsiella pneumoniae Strains: Susceptibility to Novel Antibiotics and Molecular Detection of the Resistance Mechanisms - A Study from Two Greek Tertiary Teaching Hospitals\",\"authors\":\"M. Chatzidimitriou, P. Chatzivasileiou, G. Sakellariou, Kyriazidi Ma, D. Chatzidimitriou, F. Chatzopoulou, D Rousis, E Katsifa, E. Vagdatli, Lialiaris Th\",\"doi\":\"10.36648/1989-8436.11.3.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: We evaluated the carbapenem resistance mechanisms of Klebsiella pneumoniae strains isolated in two Greek tertiary teaching hospitals and their susceptibility to currently used and novel antimicrobial agents. Materials and methods: Forty-seven carbapenem resistant K. pneumoniae strains were collected in G. Papanikolaou and Ippokrateio hospital of Thessaloniki from 1/11/2016 to 5/1/2018 and 26/1/2017 to 19/4/2017 respectively. Strain identification and antimicrobial susceptibility was conducted by Vitek 2 system (Biomerieux France). Susceptibility against new antimicrobial agents was examined by disk diffusion method. Polymerase chain reaction (PCR) was used for the detection of blaKPC, blaVIM, blaNDM and blaOXA-48 genes. Results: The EDTA-boronic acid disk synergy test performed on the 24 K. pneumoniae strains from G. Papanikolaou hospital demonstrated that 8 (33.3%) yielded positive for metallo-b-lactamases (MBL) and 16 (66.6%) for K. pneumoniae carbapenemases (KPC) production. Gentamycin demonstrated the highest in vitro activity (82.6%) among the 23 K. pneumoniae strains from Ippokrateio hospital followed by colistin (73.9%) and tigecycline (69.5%). All strains from G. Papanikolaou hospital were sensitive to colistin whereas the 70.8% of them displayed susceptibility to gentamycin. Ceftazidime/ avibactam showed the highest sensitivity (76.6%) in all strains followed by eravacyclin (66.6%). The blaKPC gene was present in 30 strains (63.8%), the blaNDM in 11 (23.4%) and the blaVIM in 6 (12.8%). The blaOXA-48 gene was not detected. Conclusions: Well established antimicrobial agents such as colistin, gentamycin and tigecycline and novel antibiotics like ceftazidime/avibactam and eravacycline may be reliable options for the treatment of invasive infections caused by KPC-producing pathogens.\",\"PeriodicalId\":8142,\"journal\":{\"name\":\"Archives of Clinical Microbiology\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Clinical Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36648/1989-8436.11.3.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Clinical Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36648/1989-8436.11.3.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carbapenem-Resistant Klebsiella pneumoniae Strains: Susceptibility to Novel Antibiotics and Molecular Detection of the Resistance Mechanisms - A Study from Two Greek Tertiary Teaching Hospitals
Objectives: We evaluated the carbapenem resistance mechanisms of Klebsiella pneumoniae strains isolated in two Greek tertiary teaching hospitals and their susceptibility to currently used and novel antimicrobial agents. Materials and methods: Forty-seven carbapenem resistant K. pneumoniae strains were collected in G. Papanikolaou and Ippokrateio hospital of Thessaloniki from 1/11/2016 to 5/1/2018 and 26/1/2017 to 19/4/2017 respectively. Strain identification and antimicrobial susceptibility was conducted by Vitek 2 system (Biomerieux France). Susceptibility against new antimicrobial agents was examined by disk diffusion method. Polymerase chain reaction (PCR) was used for the detection of blaKPC, blaVIM, blaNDM and blaOXA-48 genes. Results: The EDTA-boronic acid disk synergy test performed on the 24 K. pneumoniae strains from G. Papanikolaou hospital demonstrated that 8 (33.3%) yielded positive for metallo-b-lactamases (MBL) and 16 (66.6%) for K. pneumoniae carbapenemases (KPC) production. Gentamycin demonstrated the highest in vitro activity (82.6%) among the 23 K. pneumoniae strains from Ippokrateio hospital followed by colistin (73.9%) and tigecycline (69.5%). All strains from G. Papanikolaou hospital were sensitive to colistin whereas the 70.8% of them displayed susceptibility to gentamycin. Ceftazidime/ avibactam showed the highest sensitivity (76.6%) in all strains followed by eravacyclin (66.6%). The blaKPC gene was present in 30 strains (63.8%), the blaNDM in 11 (23.4%) and the blaVIM in 6 (12.8%). The blaOXA-48 gene was not detected. Conclusions: Well established antimicrobial agents such as colistin, gentamycin and tigecycline and novel antibiotics like ceftazidime/avibactam and eravacycline may be reliable options for the treatment of invasive infections caused by KPC-producing pathogens.