{"title":"C","authors":"R. B. Firestone","doi":"10.1515/9783110608144-004","DOIUrl":null,"url":null,"abstract":"Four supernovae (SNe), exploding 300 pc from Earth, were recorded 44, 37, 32, and 22 kyr ago in the radiocarbon (14C) record during the past 50 kyr. Each SN left a nearly identical signature in the record, beginning with an initial sudden increase in atmospheric radiocarbon, when the SN exploded, followed by a hiatus of 1500 yr, and concluding with a sustained 2000 yr increase in global radiocarbon due to γ -rays produced by diffusive shock in the SN remnant (SNR). For the past 18 kyr excess radiocarbon has decayed with the 14C half-life. SN22kyrBP, is identified as the Vela SN that exploded 250 ± 30 pc from Earth. These SN are confirmed in the 10Be, 26Al, 36Cl, and NO3 geologic records. The rate of near-Earth SNe is consistent with the observed rate of historical SNe giving a galactic rate of 14 ± 3 kyr−1 assuming the Chandra Galactic Catalog SNR distribution. The Earth has been used as a calorimeter to determine that ≈2 × 1049 erg were released as γ -rays at the time of each SN explosion and ≈1050 erg in γ -rays following each SN. The background rate of 14C production by cosmic rays has been determined as 1.61 atoms cm−2 s−1. Approximately 1/3 of the cosmic ray energy produced by diffusive shock in the SNR was observed to be emitted as high-energy γ -rays. Analysis of the 10Be/9Be ratio in marine sediment identified 19 additional near-Earth SNe that exploded 50–300 kyr ago. Comparison of the radiocarbon record with global temperature variations indicated that each SN explosion is correlated with a concurrent global warming of ≈3◦C–4◦C.","PeriodicalId":93757,"journal":{"name":"Haptics : science, technology, and applications : 11th International Conference, EuroHaptics 2018, Pisa, Italy, June 13-16, 2018, proceedings. EuroHaptics Conference (11th : 2018 : Pisa, Italy)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C\",\"authors\":\"R. B. Firestone\",\"doi\":\"10.1515/9783110608144-004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Four supernovae (SNe), exploding 300 pc from Earth, were recorded 44, 37, 32, and 22 kyr ago in the radiocarbon (14C) record during the past 50 kyr. Each SN left a nearly identical signature in the record, beginning with an initial sudden increase in atmospheric radiocarbon, when the SN exploded, followed by a hiatus of 1500 yr, and concluding with a sustained 2000 yr increase in global radiocarbon due to γ -rays produced by diffusive shock in the SN remnant (SNR). For the past 18 kyr excess radiocarbon has decayed with the 14C half-life. SN22kyrBP, is identified as the Vela SN that exploded 250 ± 30 pc from Earth. These SN are confirmed in the 10Be, 26Al, 36Cl, and NO3 geologic records. The rate of near-Earth SNe is consistent with the observed rate of historical SNe giving a galactic rate of 14 ± 3 kyr−1 assuming the Chandra Galactic Catalog SNR distribution. The Earth has been used as a calorimeter to determine that ≈2 × 1049 erg were released as γ -rays at the time of each SN explosion and ≈1050 erg in γ -rays following each SN. The background rate of 14C production by cosmic rays has been determined as 1.61 atoms cm−2 s−1. Approximately 1/3 of the cosmic ray energy produced by diffusive shock in the SNR was observed to be emitted as high-energy γ -rays. Analysis of the 10Be/9Be ratio in marine sediment identified 19 additional near-Earth SNe that exploded 50–300 kyr ago. Comparison of the radiocarbon record with global temperature variations indicated that each SN explosion is correlated with a concurrent global warming of ≈3◦C–4◦C.\",\"PeriodicalId\":93757,\"journal\":{\"name\":\"Haptics : science, technology, and applications : 11th International Conference, EuroHaptics 2018, Pisa, Italy, June 13-16, 2018, proceedings. EuroHaptics Conference (11th : 2018 : Pisa, Italy)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Haptics : science, technology, and applications : 11th International Conference, EuroHaptics 2018, Pisa, Italy, June 13-16, 2018, proceedings. EuroHaptics Conference (11th : 2018 : Pisa, Italy)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110608144-004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Haptics : science, technology, and applications : 11th International Conference, EuroHaptics 2018, Pisa, Italy, June 13-16, 2018, proceedings. EuroHaptics Conference (11th : 2018 : Pisa, Italy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110608144-004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Four supernovae (SNe), exploding 300 pc from Earth, were recorded 44, 37, 32, and 22 kyr ago in the radiocarbon (14C) record during the past 50 kyr. Each SN left a nearly identical signature in the record, beginning with an initial sudden increase in atmospheric radiocarbon, when the SN exploded, followed by a hiatus of 1500 yr, and concluding with a sustained 2000 yr increase in global radiocarbon due to γ -rays produced by diffusive shock in the SN remnant (SNR). For the past 18 kyr excess radiocarbon has decayed with the 14C half-life. SN22kyrBP, is identified as the Vela SN that exploded 250 ± 30 pc from Earth. These SN are confirmed in the 10Be, 26Al, 36Cl, and NO3 geologic records. The rate of near-Earth SNe is consistent with the observed rate of historical SNe giving a galactic rate of 14 ± 3 kyr−1 assuming the Chandra Galactic Catalog SNR distribution. The Earth has been used as a calorimeter to determine that ≈2 × 1049 erg were released as γ -rays at the time of each SN explosion and ≈1050 erg in γ -rays following each SN. The background rate of 14C production by cosmic rays has been determined as 1.61 atoms cm−2 s−1. Approximately 1/3 of the cosmic ray energy produced by diffusive shock in the SNR was observed to be emitted as high-energy γ -rays. Analysis of the 10Be/9Be ratio in marine sediment identified 19 additional near-Earth SNe that exploded 50–300 kyr ago. Comparison of the radiocarbon record with global temperature variations indicated that each SN explosion is correlated with a concurrent global warming of ≈3◦C–4◦C.