{"title":"反转序列避免了3个字母的三重模式","authors":"David Callan, Vít Jelínek, T. Mansour","doi":"10.37236/11603","DOIUrl":null,"url":null,"abstract":"An inversion sequence of length $n$ is a sequence of integers $e=e_1\\cdots e_n$ which satisfies for each $i\\in[n]=\\{1,2,\\ldots,n\\}$ the inequality $0\\le e_i < i$. For a set of patterns $P$, we let $\\mathbf{I}_n(P)$ denote the set of inversion sequences of length $n$ that avoid all the patterns from~$P$. We say that two sets of patterns $P$ and $Q$ are I-Wilf-equivalent if $|\\mathbf{I}_n(P)|=|\\mathbf{I}_n(Q)|$ for every~$n$. In this paper, we show that the number of I-Wilf-equivalence classes among triples of length-3 patterns is $137$, $138$ or~$139$. In particular, to show that this number is exactly $137$, it remains to prove $\\{101,102,110\\}\\stackrel{\\mathbf{I}}{\\sim}\\{021,100,101\\}$ and $\\{100,110,201\\}\\stackrel{\\mathbf{I}}{\\sim}\\{100,120,210\\}$.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"14 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inversion Sequences Avoiding a Triple of Patterns of 3 Letters\",\"authors\":\"David Callan, Vít Jelínek, T. Mansour\",\"doi\":\"10.37236/11603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An inversion sequence of length $n$ is a sequence of integers $e=e_1\\\\cdots e_n$ which satisfies for each $i\\\\in[n]=\\\\{1,2,\\\\ldots,n\\\\}$ the inequality $0\\\\le e_i < i$. For a set of patterns $P$, we let $\\\\mathbf{I}_n(P)$ denote the set of inversion sequences of length $n$ that avoid all the patterns from~$P$. We say that two sets of patterns $P$ and $Q$ are I-Wilf-equivalent if $|\\\\mathbf{I}_n(P)|=|\\\\mathbf{I}_n(Q)|$ for every~$n$. In this paper, we show that the number of I-Wilf-equivalence classes among triples of length-3 patterns is $137$, $138$ or~$139$. In particular, to show that this number is exactly $137$, it remains to prove $\\\\{101,102,110\\\\}\\\\stackrel{\\\\mathbf{I}}{\\\\sim}\\\\{021,100,101\\\\}$ and $\\\\{100,110,201\\\\}\\\\stackrel{\\\\mathbf{I}}{\\\\sim}\\\\{100,120,210\\\\}$.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/11603\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11603","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
摘要
长度为$n$的反转序列是一个整数序列$e=e_1\cdots e_n$,它满足每个$i\in[n]=\{1,2,\ldots,n\}$不等式$0\le e_i < i$。对于一组模式$P$,我们让$\mathbf{I}_n(P)$表示一组长度为$n$的反转序列,这些序列避免了来自$P$的所有模式。我们说,如果$|\mathbf{I}_n(P)|=|\mathbf{I}_n(Q)|$对应每个$n$,那么两组模式$P$和$Q$是等价的。在本文中,我们证明了长度为3模式的三元组中i - will -等价类的个数为$137$, $138$或$139$。特别是,为了证明这个数字确实是$137$,还需要证明$\{101,102,110\}\stackrel{\mathbf{I}}{\sim}\{021,100,101\}$和$\{100,110,201\}\stackrel{\mathbf{I}}{\sim}\{100,120,210\}$。
Inversion Sequences Avoiding a Triple of Patterns of 3 Letters
An inversion sequence of length $n$ is a sequence of integers $e=e_1\cdots e_n$ which satisfies for each $i\in[n]=\{1,2,\ldots,n\}$ the inequality $0\le e_i < i$. For a set of patterns $P$, we let $\mathbf{I}_n(P)$ denote the set of inversion sequences of length $n$ that avoid all the patterns from~$P$. We say that two sets of patterns $P$ and $Q$ are I-Wilf-equivalent if $|\mathbf{I}_n(P)|=|\mathbf{I}_n(Q)|$ for every~$n$. In this paper, we show that the number of I-Wilf-equivalence classes among triples of length-3 patterns is $137$, $138$ or~$139$. In particular, to show that this number is exactly $137$, it remains to prove $\{101,102,110\}\stackrel{\mathbf{I}}{\sim}\{021,100,101\}$ and $\{100,110,201\}\stackrel{\mathbf{I}}{\sim}\{100,120,210\}$.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.