{"title":"人胚胎干细胞的成骨作用","authors":"S. Ahmed","doi":"10.35841/0970-938X.S34-S35","DOIUrl":null,"url":null,"abstract":"Numerous cell types including osteoblasts, chondrocytes, fibroblasts and endothelial cells are load delicate and are exposed to day by day mechanical stacking in-vivo. Thick connective tissues like ligament and tendon are extended every now and again through muscle compression brought about by development though bone is under unique stacking to oppose and adjust to the accomplished powers by keeping up homoeostasis through tissue redesigning. The vast majority of the powers applied in-vivo are dynamic and cyclic which implies frequently the tissue is under stacking and resting cycles. For instance femur and tibia go through cyclic pressure and elastic powers during motion. In this manner, it is conceivable that cells react more to cyclic stacking rather than consistent stacking. Consistent stacking may expand the danger of the cells being over-burden and getting inert to the applied burden. A vital zone of exploration in tissue designing is worried about finding the responses to how mechanical stacking moves to the cells, how cells sense mechanical powers and how and when cells react to the applied outer boosts. Both 2D and 3D societies have been utilized to apply mechanical stacking onto cells, albeit 2D examinations, for example, gelatine covered plastic and glass are to some degree restricted since they don't precisely copy the intricate 3D in-vivo engineering. Hence, these surfaces don't satisfy the vital necessities for culture and recovery of utilitarian tissues. Accordingly, 3D in-vitro models may give all the more physiologically pertinent conditions to mechanotransduction contemplates.","PeriodicalId":9138,"journal":{"name":"Biomedical Research-tokyo","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osteogenesis of Human Embryonic Stem Cell\",\"authors\":\"S. Ahmed\",\"doi\":\"10.35841/0970-938X.S34-S35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous cell types including osteoblasts, chondrocytes, fibroblasts and endothelial cells are load delicate and are exposed to day by day mechanical stacking in-vivo. Thick connective tissues like ligament and tendon are extended every now and again through muscle compression brought about by development though bone is under unique stacking to oppose and adjust to the accomplished powers by keeping up homoeostasis through tissue redesigning. The vast majority of the powers applied in-vivo are dynamic and cyclic which implies frequently the tissue is under stacking and resting cycles. For instance femur and tibia go through cyclic pressure and elastic powers during motion. In this manner, it is conceivable that cells react more to cyclic stacking rather than consistent stacking. Consistent stacking may expand the danger of the cells being over-burden and getting inert to the applied burden. A vital zone of exploration in tissue designing is worried about finding the responses to how mechanical stacking moves to the cells, how cells sense mechanical powers and how and when cells react to the applied outer boosts. Both 2D and 3D societies have been utilized to apply mechanical stacking onto cells, albeit 2D examinations, for example, gelatine covered plastic and glass are to some degree restricted since they don't precisely copy the intricate 3D in-vivo engineering. Hence, these surfaces don't satisfy the vital necessities for culture and recovery of utilitarian tissues. Accordingly, 3D in-vitro models may give all the more physiologically pertinent conditions to mechanotransduction contemplates.\",\"PeriodicalId\":9138,\"journal\":{\"name\":\"Biomedical Research-tokyo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Research-tokyo\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.35841/0970-938X.S34-S35\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research-tokyo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.35841/0970-938X.S34-S35","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Numerous cell types including osteoblasts, chondrocytes, fibroblasts and endothelial cells are load delicate and are exposed to day by day mechanical stacking in-vivo. Thick connective tissues like ligament and tendon are extended every now and again through muscle compression brought about by development though bone is under unique stacking to oppose and adjust to the accomplished powers by keeping up homoeostasis through tissue redesigning. The vast majority of the powers applied in-vivo are dynamic and cyclic which implies frequently the tissue is under stacking and resting cycles. For instance femur and tibia go through cyclic pressure and elastic powers during motion. In this manner, it is conceivable that cells react more to cyclic stacking rather than consistent stacking. Consistent stacking may expand the danger of the cells being over-burden and getting inert to the applied burden. A vital zone of exploration in tissue designing is worried about finding the responses to how mechanical stacking moves to the cells, how cells sense mechanical powers and how and when cells react to the applied outer boosts. Both 2D and 3D societies have been utilized to apply mechanical stacking onto cells, albeit 2D examinations, for example, gelatine covered plastic and glass are to some degree restricted since they don't precisely copy the intricate 3D in-vivo engineering. Hence, these surfaces don't satisfy the vital necessities for culture and recovery of utilitarian tissues. Accordingly, 3D in-vitro models may give all the more physiologically pertinent conditions to mechanotransduction contemplates.
期刊介绍:
Biomedical Research is peer-reviewed International Research Journal . It was first launched in 1990 as a biannual English Journal and later became triannual. From 2008 it is published in Jan-Apr/ May-Aug/ Sep-Dec..