蔡氏电路中的零hopf分岔

IF 0.5 4区 数学 Q3 MATHEMATICS
J. Ginoux, J. Llibre
{"title":"蔡氏电路中的零hopf分岔","authors":"J. Ginoux, J. Llibre","doi":"10.1063/5.0137020","DOIUrl":null,"url":null,"abstract":"An equilibrium point of a differential system in R3 such that the eigenvalues of the Jacobian matrix of the system at the equilibrium are 0 and ±ωi with ω > 0 is called a zero-Hopf equilibrium point. First, we prove that the Chua’s circuit can have three zero-Hopf equilibria varying its three parameters. Later, we show that from the zero-Hopf equilibrium point localized at the origin of coordinates can bifurcate one periodic orbit. Moreover, we provide an analytic estimation of the expression of this periodic orbit and we have determined the kind of the stability of the periodic orbit in function of the parameters of the perturbation. The tool used for proving these results is the averaging theory of second order.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"9 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Hopf bifurcation in the Chua’s circuit\",\"authors\":\"J. Ginoux, J. Llibre\",\"doi\":\"10.1063/5.0137020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An equilibrium point of a differential system in R3 such that the eigenvalues of the Jacobian matrix of the system at the equilibrium are 0 and ±ωi with ω > 0 is called a zero-Hopf equilibrium point. First, we prove that the Chua’s circuit can have three zero-Hopf equilibria varying its three parameters. Later, we show that from the zero-Hopf equilibrium point localized at the origin of coordinates can bifurcate one periodic orbit. Moreover, we provide an analytic estimation of the expression of this periodic orbit and we have determined the kind of the stability of the periodic orbit in function of the parameters of the perturbation. The tool used for proving these results is the averaging theory of second order.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0137020\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0137020","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个在R3中的微分系统的平衡点使得该系统在平衡点处的雅可比矩阵的特征值为0和±ωi且ω > 0的平衡点称为0 - hopf平衡点。首先,我们证明了蔡氏电路可以有三个改变其三个参数的零hopf平衡点。随后,我们证明了从定位于坐标原点的0 - hopf平衡点可以分岔出一个周期轨道。此外,我们给出了周期轨道表达式的解析估计,并确定了周期轨道的稳定性与扰动参数的函数关系。用来证明这些结果的工具是二阶平均理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-Hopf bifurcation in the Chua’s circuit
An equilibrium point of a differential system in R3 such that the eigenvalues of the Jacobian matrix of the system at the equilibrium are 0 and ±ωi with ω > 0 is called a zero-Hopf equilibrium point. First, we prove that the Chua’s circuit can have three zero-Hopf equilibria varying its three parameters. Later, we show that from the zero-Hopf equilibrium point localized at the origin of coordinates can bifurcate one periodic orbit. Moreover, we provide an analytic estimation of the expression of this periodic orbit and we have determined the kind of the stability of the periodic orbit in function of the parameters of the perturbation. The tool used for proving these results is the averaging theory of second order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信