人工分形界面上的催化反应:用“魔鬼梳”模拟

Pascal Mougin, Michel Pons, Jacques Villermaux
{"title":"人工分形界面上的催化反应:用“魔鬼梳”模拟","authors":"Pascal Mougin,&nbsp;Michel Pons,&nbsp;Jacques Villermaux","doi":"10.1016/S0923-0467(96)03104-1","DOIUrl":null,"url":null,"abstract":"<div><p>We have proposed the model of a 2-D fractal objects exhibiting an important contour length within a finite area. This structure offers a large internal interface can be used as a catalytic support. In the case of a single first-order reaction A → R at the interface, numerical simulations show evidence for a new diffusional regime due to the fractality of the support. In this regime, the rate of formation of product R no longer depends on the kinetic rate constant of the reaction.</p></div>","PeriodicalId":101226,"journal":{"name":"The Chemical Engineering Journal and the Biochemical Engineering Journal","volume":"64 1","pages":"Pages 63-68"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0923-0467(96)03104-1","citationCount":"7","resultStr":"{\"title\":\"Catalytic reactions at an artificial fractal interface: Simulation with the ‘Devil's Comb’\",\"authors\":\"Pascal Mougin,&nbsp;Michel Pons,&nbsp;Jacques Villermaux\",\"doi\":\"10.1016/S0923-0467(96)03104-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have proposed the model of a 2-D fractal objects exhibiting an important contour length within a finite area. This structure offers a large internal interface can be used as a catalytic support. In the case of a single first-order reaction A → R at the interface, numerical simulations show evidence for a new diffusional regime due to the fractality of the support. In this regime, the rate of formation of product R no longer depends on the kinetic rate constant of the reaction.</p></div>\",\"PeriodicalId\":101226,\"journal\":{\"name\":\"The Chemical Engineering Journal and the Biochemical Engineering Journal\",\"volume\":\"64 1\",\"pages\":\"Pages 63-68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0923-0467(96)03104-1\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Chemical Engineering Journal and the Biochemical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923046796031041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Chemical Engineering Journal and the Biochemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923046796031041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了在有限区域内具有重要轮廓长度的二维分形物体的模型。这种结构提供了一个大的内部界面,可以用作催化支撑。在单一一级反应a→R的情况下,数值模拟表明,由于支撑的分形,出现了一种新的扩散状态。在这种情况下,产物R的生成速率不再取决于反应的动力学速率常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catalytic reactions at an artificial fractal interface: Simulation with the ‘Devil's Comb’

We have proposed the model of a 2-D fractal objects exhibiting an important contour length within a finite area. This structure offers a large internal interface can be used as a catalytic support. In the case of a single first-order reaction A → R at the interface, numerical simulations show evidence for a new diffusional regime due to the fractality of the support. In this regime, the rate of formation of product R no longer depends on the kinetic rate constant of the reaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信