{"title":"Rado图和无限完全图的分解","authors":"Simone Costa, T. Traetta","doi":"10.26493/1855-3974.2616.4a9","DOIUrl":null,"url":null,"abstract":"Let F = {Fα : α ∈ A} be a family of infinite graphs, together with Λ. The Factorization Problem FP (F ,Λ) asks whether F can be realized as a factorization of Λ, namely, whether there is a factorization G = {Γα : α ∈ A} of Λ such that each Γα is a copy of Fα. We study this problem when Λ is either the Rado graph R or the complete graph Kא of infinite order א. When F is a countable family, we show that FP (F , R) is solvable if and only if each graph in F has no finite dominating set. We also prove that FP (F ,Kא) admits a solution whenever the cardinality F coincide with the order and the domination numbers of its graphs. For countable complete graphs, we show some non existence results when the domination numbers of the graphs in F are finite. More precisely, we show that there is no factorization of KN into copies of a k-star (that is, the vertex disjoint union of k countable stars) when k = 1, 2, whereas it exists when k ≥ 4, leaving the problem open for k = 3. Finally, we determine sufficient conditions for the graphs of a decomposition to be arranged into resolution classes.","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factorizing the Rado graph and infinite complete graphs\",\"authors\":\"Simone Costa, T. Traetta\",\"doi\":\"10.26493/1855-3974.2616.4a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let F = {Fα : α ∈ A} be a family of infinite graphs, together with Λ. The Factorization Problem FP (F ,Λ) asks whether F can be realized as a factorization of Λ, namely, whether there is a factorization G = {Γα : α ∈ A} of Λ such that each Γα is a copy of Fα. We study this problem when Λ is either the Rado graph R or the complete graph Kא of infinite order א. When F is a countable family, we show that FP (F , R) is solvable if and only if each graph in F has no finite dominating set. We also prove that FP (F ,Kא) admits a solution whenever the cardinality F coincide with the order and the domination numbers of its graphs. For countable complete graphs, we show some non existence results when the domination numbers of the graphs in F are finite. More precisely, we show that there is no factorization of KN into copies of a k-star (that is, the vertex disjoint union of k countable stars) when k = 1, 2, whereas it exists when k ≥ 4, leaving the problem open for k = 3. Finally, we determine sufficient conditions for the graphs of a decomposition to be arranged into resolution classes.\",\"PeriodicalId\":49239,\"journal\":{\"name\":\"Ars Mathematica Contemporanea\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Mathematica Contemporanea\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2616.4a9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.26493/1855-3974.2616.4a9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Factorizing the Rado graph and infinite complete graphs
Let F = {Fα : α ∈ A} be a family of infinite graphs, together with Λ. The Factorization Problem FP (F ,Λ) asks whether F can be realized as a factorization of Λ, namely, whether there is a factorization G = {Γα : α ∈ A} of Λ such that each Γα is a copy of Fα. We study this problem when Λ is either the Rado graph R or the complete graph Kא of infinite order א. When F is a countable family, we show that FP (F , R) is solvable if and only if each graph in F has no finite dominating set. We also prove that FP (F ,Kא) admits a solution whenever the cardinality F coincide with the order and the domination numbers of its graphs. For countable complete graphs, we show some non existence results when the domination numbers of the graphs in F are finite. More precisely, we show that there is no factorization of KN into copies of a k-star (that is, the vertex disjoint union of k countable stars) when k = 1, 2, whereas it exists when k ≥ 4, leaving the problem open for k = 3. Finally, we determine sufficient conditions for the graphs of a decomposition to be arranged into resolution classes.
期刊介绍:
Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.