{"title":"减轻载体饱和的便利运输膜脱碳稀释二氧化碳源:一个实验和技术经济研究","authors":"Yang Han , W.S. Winston Ho","doi":"10.1016/j.memlet.2022.100014","DOIUrl":null,"url":null,"abstract":"<div><p>The CO<sub>2</sub>/N<sub>2</sub> separation performances of facilitated transport membranes (FTMs) containing aminoacid salts as mobile carriers were characterized under dilute feed gases with 0.05–20% CO<sub>2</sub>. At a reduced CO<sub>2</sub> partial pressure, the carrier saturation in the FTMs was mitigated, which enhanced both the CO<sub>2</sub> permeance and CO<sub>2</sub>/N<sub>2</sub> selectivity. The best FTM containing 2-(1-piperazinyl)ethylamine sarcosinate exhibited an uprising CO<sub>2</sub> permeance from 1968 to 3822 GPU and an improved CO<sub>2</sub>/N<sub>2</sub> selectivity from 249 to 472 with reducing CO<sub>2</sub> content from 1% to 0.1%. The feasibility of this FTM is exemplified by designing a two-stage enriching membrane cascade to further remove 90% of the CO<sub>2</sub> in a residual coal flue gas containing 1.75% CO<sub>2</sub>. Techno-economic analysis indicates a low capture cost of $83.8/tonne. The marginal costs beyond 90% capture are also evaluated for a variety of residual flue gases, indicating that the FTM-based capture from the coal or cement plant residual flue gas is more cost effective than direct air capture.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421222000022/pdfft?md5=bc23429ddfd6e399497e81a45c762e84&pid=1-s2.0-S2772421222000022-main.pdf","citationCount":"5","resultStr":"{\"title\":\"Mitigated carrier saturation of facilitated transport membranes for decarbonizing dilute CO2 sources: An experimental and techno-economic study\",\"authors\":\"Yang Han , W.S. Winston Ho\",\"doi\":\"10.1016/j.memlet.2022.100014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The CO<sub>2</sub>/N<sub>2</sub> separation performances of facilitated transport membranes (FTMs) containing aminoacid salts as mobile carriers were characterized under dilute feed gases with 0.05–20% CO<sub>2</sub>. At a reduced CO<sub>2</sub> partial pressure, the carrier saturation in the FTMs was mitigated, which enhanced both the CO<sub>2</sub> permeance and CO<sub>2</sub>/N<sub>2</sub> selectivity. The best FTM containing 2-(1-piperazinyl)ethylamine sarcosinate exhibited an uprising CO<sub>2</sub> permeance from 1968 to 3822 GPU and an improved CO<sub>2</sub>/N<sub>2</sub> selectivity from 249 to 472 with reducing CO<sub>2</sub> content from 1% to 0.1%. The feasibility of this FTM is exemplified by designing a two-stage enriching membrane cascade to further remove 90% of the CO<sub>2</sub> in a residual coal flue gas containing 1.75% CO<sub>2</sub>. Techno-economic analysis indicates a low capture cost of $83.8/tonne. The marginal costs beyond 90% capture are also evaluated for a variety of residual flue gases, indicating that the FTM-based capture from the coal or cement plant residual flue gas is more cost effective than direct air capture.</p></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772421222000022/pdfft?md5=bc23429ddfd6e399497e81a45c762e84&pid=1-s2.0-S2772421222000022-main.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772421222000022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421222000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Mitigated carrier saturation of facilitated transport membranes for decarbonizing dilute CO2 sources: An experimental and techno-economic study
The CO2/N2 separation performances of facilitated transport membranes (FTMs) containing aminoacid salts as mobile carriers were characterized under dilute feed gases with 0.05–20% CO2. At a reduced CO2 partial pressure, the carrier saturation in the FTMs was mitigated, which enhanced both the CO2 permeance and CO2/N2 selectivity. The best FTM containing 2-(1-piperazinyl)ethylamine sarcosinate exhibited an uprising CO2 permeance from 1968 to 3822 GPU and an improved CO2/N2 selectivity from 249 to 472 with reducing CO2 content from 1% to 0.1%. The feasibility of this FTM is exemplified by designing a two-stage enriching membrane cascade to further remove 90% of the CO2 in a residual coal flue gas containing 1.75% CO2. Techno-economic analysis indicates a low capture cost of $83.8/tonne. The marginal costs beyond 90% capture are also evaluated for a variety of residual flue gases, indicating that the FTM-based capture from the coal or cement plant residual flue gas is more cost effective than direct air capture.