{"title":"基于模糊逻辑的横摆角速度估计的前轮主动转向系统","authors":"V. R. Aparow, Lok Tze Lun","doi":"10.15282/ijame.19.2.2022.17.0759","DOIUrl":null,"url":null,"abstract":"The paper devised and compared the performances of PID, fuzzy-tuned PID and fuzzy logic controller in an Active Front Wheel Steering system to stabilize a 9-DOF nonlinear passenger vehicle when subjected to lateral wind disturbance. The vehicle model was derived mathematically and verified with data from IPG CarMaker at a longitudinal speed of 80 km/h. Initially, the disturbance test was conducted using three lateral wind disturbance profiles to test for controller resiliency with zero steering input. Then, a simple but effective yaw rate observer was derived without compromising the linearity of the vehicle model to simulate the disturbance test with a double lane change (DLC) steering input. A more extreme disturbance magnitude was evaluated in the latter test using the developed control designs. The three controllers showed good performances in both disturbance tests, with fuzzy logic having the lowest error out of the three, which is less than 5% for using the estimated yaw rate observer.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Front Wheel Steering System using Yaw Rate Estimation based Fuzzy Logic Due to Various Lateral Wind Disturbance\",\"authors\":\"V. R. Aparow, Lok Tze Lun\",\"doi\":\"10.15282/ijame.19.2.2022.17.0759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper devised and compared the performances of PID, fuzzy-tuned PID and fuzzy logic controller in an Active Front Wheel Steering system to stabilize a 9-DOF nonlinear passenger vehicle when subjected to lateral wind disturbance. The vehicle model was derived mathematically and verified with data from IPG CarMaker at a longitudinal speed of 80 km/h. Initially, the disturbance test was conducted using three lateral wind disturbance profiles to test for controller resiliency with zero steering input. Then, a simple but effective yaw rate observer was derived without compromising the linearity of the vehicle model to simulate the disturbance test with a double lane change (DLC) steering input. A more extreme disturbance magnitude was evaluated in the latter test using the developed control designs. The three controllers showed good performances in both disturbance tests, with fuzzy logic having the lowest error out of the three, which is less than 5% for using the estimated yaw rate observer.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.2.2022.17.0759\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.2.2022.17.0759","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Active Front Wheel Steering System using Yaw Rate Estimation based Fuzzy Logic Due to Various Lateral Wind Disturbance
The paper devised and compared the performances of PID, fuzzy-tuned PID and fuzzy logic controller in an Active Front Wheel Steering system to stabilize a 9-DOF nonlinear passenger vehicle when subjected to lateral wind disturbance. The vehicle model was derived mathematically and verified with data from IPG CarMaker at a longitudinal speed of 80 km/h. Initially, the disturbance test was conducted using three lateral wind disturbance profiles to test for controller resiliency with zero steering input. Then, a simple but effective yaw rate observer was derived without compromising the linearity of the vehicle model to simulate the disturbance test with a double lane change (DLC) steering input. A more extreme disturbance magnitude was evaluated in the latter test using the developed control designs. The three controllers showed good performances in both disturbance tests, with fuzzy logic having the lowest error out of the three, which is less than 5% for using the estimated yaw rate observer.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.