{"title":"多反舰导弹协同轨迹成形制导律","authors":"G. Yang, Y. Fang, W. Ma, S. Zhu, W. Fu","doi":"10.1017/aer.2023.38","DOIUrl":null,"url":null,"abstract":"\n To enhance the performance of anti-ship missiles cooperative attack, this paper proposes a finite-time trajectory shaping-based cooperative guidance law (TSCGL). Firstly, the cooperative guidance model is established on segmented linearisation of the missile’s heading angle. Then, a trajectory shaping guidance law for a single missile is derived by a weighted optimal energy cost function and Schwarz inequality. On this basis, a finite-time TSCGL is proposed combined with trajectory shaping technology and finite-time theory. The desirable finite-time convergence performance can ensure a simultaneous attack. Through an improved method of time-to-go estimation, it is independent of small-angle assumption and relaxes the launching conditions of the missiles. Additionally, the proposed finite-time TSCGL can achieve better damage performance through energy management. Finally, simulation results demonstrate the effectiveness and superiority of the proposed finite-time TSCGL.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative trajectory shaping guidance law for multiple anti-ship missiles\",\"authors\":\"G. Yang, Y. Fang, W. Ma, S. Zhu, W. Fu\",\"doi\":\"10.1017/aer.2023.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To enhance the performance of anti-ship missiles cooperative attack, this paper proposes a finite-time trajectory shaping-based cooperative guidance law (TSCGL). Firstly, the cooperative guidance model is established on segmented linearisation of the missile’s heading angle. Then, a trajectory shaping guidance law for a single missile is derived by a weighted optimal energy cost function and Schwarz inequality. On this basis, a finite-time TSCGL is proposed combined with trajectory shaping technology and finite-time theory. The desirable finite-time convergence performance can ensure a simultaneous attack. Through an improved method of time-to-go estimation, it is independent of small-angle assumption and relaxes the launching conditions of the missiles. Additionally, the proposed finite-time TSCGL can achieve better damage performance through energy management. Finally, simulation results demonstrate the effectiveness and superiority of the proposed finite-time TSCGL.\",\"PeriodicalId\":22567,\"journal\":{\"name\":\"The Aeronautical Journal (1968)\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Aeronautical Journal (1968)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aer.2023.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2023.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cooperative trajectory shaping guidance law for multiple anti-ship missiles
To enhance the performance of anti-ship missiles cooperative attack, this paper proposes a finite-time trajectory shaping-based cooperative guidance law (TSCGL). Firstly, the cooperative guidance model is established on segmented linearisation of the missile’s heading angle. Then, a trajectory shaping guidance law for a single missile is derived by a weighted optimal energy cost function and Schwarz inequality. On this basis, a finite-time TSCGL is proposed combined with trajectory shaping technology and finite-time theory. The desirable finite-time convergence performance can ensure a simultaneous attack. Through an improved method of time-to-go estimation, it is independent of small-angle assumption and relaxes the launching conditions of the missiles. Additionally, the proposed finite-time TSCGL can achieve better damage performance through energy management. Finally, simulation results demonstrate the effectiveness and superiority of the proposed finite-time TSCGL.