特尔扎吉关于管道爆裂相关地面稳定性的三个稳定系数

IF 4.9 Q2 ENERGY & FUELS
Jim Shiau , Suraparb Keawsawasvong , Rungkhun Banyong
{"title":"特尔扎吉关于管道爆裂相关地面稳定性的三个稳定系数","authors":"Jim Shiau ,&nbsp;Suraparb Keawsawasvong ,&nbsp;Rungkhun Banyong","doi":"10.1016/j.jpse.2023.100128","DOIUrl":null,"url":null,"abstract":"<div><p>A recent study on active trapdoor stability has been completed by the authors using Terzaghi's three stability factors approach. It was concluded that the superposition approach is an effective way to evaluate the stability of cohesive-frictional soils. This technical note aims to extend the previous active trapdoor study to perform a stability assessment of a passive planar trapdoor (i.e., a blowout condition) in cohesive-frictional soil. Note that this passive trapdoor problem represents the blowout stability of soils due to defective pipelines under high water main pressures, in spite of the frequent media news about the water main bursts which enlightens the relevance of the problem. Numerical solutions of upper and lower bound finite element limit analyses are presented in form of the three stability factors (<em>F</em><sub>c</sub><em>, F</em><sub>s</sub><em>, and F</em><sub>γ</sub>), which consider the effect of cohesion, surcharge, and soil unit weight respectively. In the event of passive trapdoor stability, this technique can be used to determine a critical blowout pressure due to a water mains leak. The study continues with a series of sensitivity analyses with a widely selected range of parameters including the cover-depth ratio (<em>H/B</em>) and the drained frictional angle (<em>ϕ</em>). The influence of these parameters on the three stability factors is discussed, and a practical example of adapting these approaches is also introduced. All numerical results are provided in the forms of design charts and tables that can be efficiently used with confidence in design practice.</p></div>","PeriodicalId":100824,"journal":{"name":"Journal of Pipeline Science and Engineering","volume":"3 4","pages":"Article 100128"},"PeriodicalIF":4.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667143323000203/pdfft?md5=cc6d48e9c010745b5114214f9e66d627&pid=1-s2.0-S2667143323000203-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Terzaghi's three stability factors for pipeline burst-related ground stability\",\"authors\":\"Jim Shiau ,&nbsp;Suraparb Keawsawasvong ,&nbsp;Rungkhun Banyong\",\"doi\":\"10.1016/j.jpse.2023.100128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A recent study on active trapdoor stability has been completed by the authors using Terzaghi's three stability factors approach. It was concluded that the superposition approach is an effective way to evaluate the stability of cohesive-frictional soils. This technical note aims to extend the previous active trapdoor study to perform a stability assessment of a passive planar trapdoor (i.e., a blowout condition) in cohesive-frictional soil. Note that this passive trapdoor problem represents the blowout stability of soils due to defective pipelines under high water main pressures, in spite of the frequent media news about the water main bursts which enlightens the relevance of the problem. Numerical solutions of upper and lower bound finite element limit analyses are presented in form of the three stability factors (<em>F</em><sub>c</sub><em>, F</em><sub>s</sub><em>, and F</em><sub>γ</sub>), which consider the effect of cohesion, surcharge, and soil unit weight respectively. In the event of passive trapdoor stability, this technique can be used to determine a critical blowout pressure due to a water mains leak. The study continues with a series of sensitivity analyses with a widely selected range of parameters including the cover-depth ratio (<em>H/B</em>) and the drained frictional angle (<em>ϕ</em>). The influence of these parameters on the three stability factors is discussed, and a practical example of adapting these approaches is also introduced. All numerical results are provided in the forms of design charts and tables that can be efficiently used with confidence in design practice.</p></div>\",\"PeriodicalId\":100824,\"journal\":{\"name\":\"Journal of Pipeline Science and Engineering\",\"volume\":\"3 4\",\"pages\":\"Article 100128\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667143323000203/pdfft?md5=cc6d48e9c010745b5114214f9e66d627&pid=1-s2.0-S2667143323000203-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pipeline Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667143323000203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pipeline Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667143323000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

最近,作者利用特尔扎吉的三个稳定系数法完成了一项关于活动活门稳定性的研究。研究得出结论,叠加法是评估粘性摩擦土稳定性的有效方法。本技术说明旨在扩展之前的主动活门研究,对粘性摩擦土中的被动平面活门(即井喷条件)进行稳定性评估。需要注意的是,尽管媒体频繁报道水管爆裂的新闻,但这一被动活板门问题代表的是在高水管压力下因管道缺陷而导致的土壤井喷稳定性,这也揭示了该问题的相关性。本文以三个稳定系数(Fc、Fs 和 Fγ)的形式给出了上下限有限元极限分析的数值解,这三个稳定系数分别考虑了内聚力、附加荷载和土壤单位重量的影响。在被动活门稳定的情况下,该技术可用于确定水管泄漏导致的临界井喷压力。研究继续进行了一系列敏感性分析,广泛选择了一系列参数,包括覆盖深度比 (H/B) 和排水摩擦角 (j)。研究讨论了这些参数对三个稳定系数的影响,并介绍了采用这些方法的实际例子。所有数值结果均以设计图表和表格的形式提供,可在设计实践中有效使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Terzaghi's three stability factors for pipeline burst-related ground stability

A recent study on active trapdoor stability has been completed by the authors using Terzaghi's three stability factors approach. It was concluded that the superposition approach is an effective way to evaluate the stability of cohesive-frictional soils. This technical note aims to extend the previous active trapdoor study to perform a stability assessment of a passive planar trapdoor (i.e., a blowout condition) in cohesive-frictional soil. Note that this passive trapdoor problem represents the blowout stability of soils due to defective pipelines under high water main pressures, in spite of the frequent media news about the water main bursts which enlightens the relevance of the problem. Numerical solutions of upper and lower bound finite element limit analyses are presented in form of the three stability factors (Fc, Fs, and Fγ), which consider the effect of cohesion, surcharge, and soil unit weight respectively. In the event of passive trapdoor stability, this technique can be used to determine a critical blowout pressure due to a water mains leak. The study continues with a series of sensitivity analyses with a widely selected range of parameters including the cover-depth ratio (H/B) and the drained frictional angle (ϕ). The influence of these parameters on the three stability factors is discussed, and a practical example of adapting these approaches is also introduced. All numerical results are provided in the forms of design charts and tables that can be efficiently used with confidence in design practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信