燃料电池混合动力汽车建模、仿真及控制策略优化

Umidjon Usmanov, S. Ruzimov, A. Tonoli, A. Mukhitdinov
{"title":"燃料电池混合动力汽车建模、仿真及控制策略优化","authors":"Umidjon Usmanov, S. Ruzimov, A. Tonoli, A. Mukhitdinov","doi":"10.3390/vehicles5020026","DOIUrl":null,"url":null,"abstract":"This work represents the development of a Fuel Cell Hybrid Electric Vehicle (FCHEV) model, its validation, and the comparison of different control strategies based on the Toyota Mirai (1st generation) vehicle and its subsystems. The main investigated parameters are hydrogen consumption, and the variation of the state of charge, current, and voltage of the battery. The FCHEV model, which is made up of multiple subsystems, is developed and simulated in MATLAB® Simulink environment using a rule-based control strategy derived from the real system. The results of the model were validated using the experimental data obtained from the open-source Argonne National Laboratory (ANL) database. In the second part, the equivalent consumption minimization strategy is implemented into the controller logic to optimize the existing control strategy and investigate the difference in hydrogen consumption. It was found that the ECMS control strategy outperforms the rule-based one in all drive cycles by 0.4–15.6%. On the other hand, when compared to the real controller, ECMS performs worse for certain considered driving cycles and outperforms others.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling, Simulation and Control Strategy Optimization of Fuel Cell Hybrid Electric Vehicle\",\"authors\":\"Umidjon Usmanov, S. Ruzimov, A. Tonoli, A. Mukhitdinov\",\"doi\":\"10.3390/vehicles5020026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work represents the development of a Fuel Cell Hybrid Electric Vehicle (FCHEV) model, its validation, and the comparison of different control strategies based on the Toyota Mirai (1st generation) vehicle and its subsystems. The main investigated parameters are hydrogen consumption, and the variation of the state of charge, current, and voltage of the battery. The FCHEV model, which is made up of multiple subsystems, is developed and simulated in MATLAB® Simulink environment using a rule-based control strategy derived from the real system. The results of the model were validated using the experimental data obtained from the open-source Argonne National Laboratory (ANL) database. In the second part, the equivalent consumption minimization strategy is implemented into the controller logic to optimize the existing control strategy and investigate the difference in hydrogen consumption. It was found that the ECMS control strategy outperforms the rule-based one in all drive cycles by 0.4–15.6%. On the other hand, when compared to the real controller, ECMS performs worse for certain considered driving cycles and outperforms others.\",\"PeriodicalId\":73282,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vehicles5020026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles5020026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作代表了基于丰田Mirai(第一代)汽车及其子系统的燃料电池混合动力汽车(FCHEV)模型的开发、验证以及不同控制策略的比较。研究的主要参数是氢气消耗量、电池的充电状态、电流和电压的变化。该模型由多个子系统组成,采用基于规则的控制策略,在MATLAB®Simulink环境中进行仿真。该模型的结果使用从开源的阿贡国家实验室(ANL)数据库中获得的实验数据进行了验证。第二部分在控制器逻辑中引入等效消耗最小化策略,对现有控制策略进行优化,研究氢消耗差异。结果表明,ECMS控制策略在各工况下均优于基于规则的控制策略0.4 ~ 15.6%。另一方面,与实际控制器相比,ECMS在某些考虑的驾驶周期中表现较差,但优于其他控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling, Simulation and Control Strategy Optimization of Fuel Cell Hybrid Electric Vehicle
This work represents the development of a Fuel Cell Hybrid Electric Vehicle (FCHEV) model, its validation, and the comparison of different control strategies based on the Toyota Mirai (1st generation) vehicle and its subsystems. The main investigated parameters are hydrogen consumption, and the variation of the state of charge, current, and voltage of the battery. The FCHEV model, which is made up of multiple subsystems, is developed and simulated in MATLAB® Simulink environment using a rule-based control strategy derived from the real system. The results of the model were validated using the experimental data obtained from the open-source Argonne National Laboratory (ANL) database. In the second part, the equivalent consumption minimization strategy is implemented into the controller logic to optimize the existing control strategy and investigate the difference in hydrogen consumption. It was found that the ECMS control strategy outperforms the rule-based one in all drive cycles by 0.4–15.6%. On the other hand, when compared to the real controller, ECMS performs worse for certain considered driving cycles and outperforms others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信