{"title":"具有交替社会的有限原始IBIS群的分类","authors":"Melissa Lee, Pablo Spiga","doi":"10.1515/jgth-2022-0099","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝐺 be a finite permutation group on Ω. An ordered sequence ( ω 1 , … , ω ℓ ) (\\omega_{1},\\ldots,\\omega_{\\ell}) of elements of Ω is an irredundant base for 𝐺 if the pointwise stabilizer is trivial and no point is fixed by the stabilizer of its predecessors. If all irredundant bases of 𝐺 have the same cardinality, 𝐺 is said to be an IBIS group. Lucchini, Morigi and Moscatiello have proved a theorem reducing the problem of classifying finite primitive IBIS groups 𝐺 to the case that the socle of 𝐺 is either abelian or non-abelian simple. In this paper, we classify the finite primitive IBIS groups having socle an alternating group. Moreover, we propose a conjecture aiming to give a classification of all almost simple primitive IBIS groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A classification of finite primitive IBIS groups with alternating socle\",\"authors\":\"Melissa Lee, Pablo Spiga\",\"doi\":\"10.1515/jgth-2022-0099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let 𝐺 be a finite permutation group on Ω. An ordered sequence ( ω 1 , … , ω ℓ ) (\\\\omega_{1},\\\\ldots,\\\\omega_{\\\\ell}) of elements of Ω is an irredundant base for 𝐺 if the pointwise stabilizer is trivial and no point is fixed by the stabilizer of its predecessors. If all irredundant bases of 𝐺 have the same cardinality, 𝐺 is said to be an IBIS group. Lucchini, Morigi and Moscatiello have proved a theorem reducing the problem of classifying finite primitive IBIS groups 𝐺 to the case that the socle of 𝐺 is either abelian or non-abelian simple. In this paper, we classify the finite primitive IBIS groups having socle an alternating group. Moreover, we propose a conjecture aiming to give a classification of all almost simple primitive IBIS groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A classification of finite primitive IBIS groups with alternating socle
Abstract Let 𝐺 be a finite permutation group on Ω. An ordered sequence ( ω 1 , … , ω ℓ ) (\omega_{1},\ldots,\omega_{\ell}) of elements of Ω is an irredundant base for 𝐺 if the pointwise stabilizer is trivial and no point is fixed by the stabilizer of its predecessors. If all irredundant bases of 𝐺 have the same cardinality, 𝐺 is said to be an IBIS group. Lucchini, Morigi and Moscatiello have proved a theorem reducing the problem of classifying finite primitive IBIS groups 𝐺 to the case that the socle of 𝐺 is either abelian or non-abelian simple. In this paper, we classify the finite primitive IBIS groups having socle an alternating group. Moreover, we propose a conjecture aiming to give a classification of all almost simple primitive IBIS groups.