归一化深度函数的行为

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Ficarra, J. Herzog, T. Hibi
{"title":"归一化深度函数的行为","authors":"A. Ficarra, J. Herzog, T. Hibi","doi":"10.37236/11611","DOIUrl":null,"url":null,"abstract":"Let $I\\subset S=K[x_1,\\dots,x_n]$ be a squarefree monomial ideal, $K$ a field. The $k$th squarefree power $I^{[k]}$ of $I$ is the monomial ideal of $S$ generated by all squarefree monomials belonging to $I^k$. The biggest integer $k$ such that $I^{[k]}\\ne(0)$ is called the monomial grade of $I$ and it is denoted by $\\nu(I)$. Let $d_k$ be the minimum degree of the monomials belonging to $I^{[k]}$. Then, $\\text{depth}(S/I^{[k]})\\ge d_k-1$ for all $1\\le k\\le\\nu(I)$. The normalized depth function of $I$ is defined as $g_{I}(k)=\\text{depth}(S/I^{[k]})-(d_k-1)$, $1\\le k\\le\\nu(I)$. It is expected that $g_I(k)$ is a non-increasing function for any $I$. In this article we study the behaviour of $g_{I}(k)$ under various operations on monomial ideals. Our main result characterizes all cochordal graphs $G$ such that for the edge ideal $I(G)$ of $G$ we have $g_{I(G)}(1)=0$. They are precisely all cochordal graphs $G$ whose complementary graph $G^c$ is connected and has a cut vertex. As a far-reaching application, for given integers $1\\le s<m$ we construct a graph $G$ such that $\\nu(I(G))=m$ and $g_{I(G)}(k)=0$ if and only if $k=s+1,\\dots,m$. Finally, we show that any non-increasing function of non-negative integers is the normalized depth function of some squarefree monomial ideal.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Behaviour of the Normalized Depth Function\",\"authors\":\"A. Ficarra, J. Herzog, T. Hibi\",\"doi\":\"10.37236/11611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $I\\\\subset S=K[x_1,\\\\dots,x_n]$ be a squarefree monomial ideal, $K$ a field. The $k$th squarefree power $I^{[k]}$ of $I$ is the monomial ideal of $S$ generated by all squarefree monomials belonging to $I^k$. The biggest integer $k$ such that $I^{[k]}\\\\ne(0)$ is called the monomial grade of $I$ and it is denoted by $\\\\nu(I)$. Let $d_k$ be the minimum degree of the monomials belonging to $I^{[k]}$. Then, $\\\\text{depth}(S/I^{[k]})\\\\ge d_k-1$ for all $1\\\\le k\\\\le\\\\nu(I)$. The normalized depth function of $I$ is defined as $g_{I}(k)=\\\\text{depth}(S/I^{[k]})-(d_k-1)$, $1\\\\le k\\\\le\\\\nu(I)$. It is expected that $g_I(k)$ is a non-increasing function for any $I$. In this article we study the behaviour of $g_{I}(k)$ under various operations on monomial ideals. Our main result characterizes all cochordal graphs $G$ such that for the edge ideal $I(G)$ of $G$ we have $g_{I(G)}(1)=0$. They are precisely all cochordal graphs $G$ whose complementary graph $G^c$ is connected and has a cut vertex. As a far-reaching application, for given integers $1\\\\le s<m$ we construct a graph $G$ such that $\\\\nu(I(G))=m$ and $g_{I(G)}(k)=0$ if and only if $k=s+1,\\\\dots,m$. Finally, we show that any non-increasing function of non-negative integers is the normalized depth function of some squarefree monomial ideal.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/11611\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11611","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设$I\subset S=K[x_1,\dots,x_n]$为无平方项理想,$K$为场。$I$的$k$无平方幂$I^{[k]}$是由所有属于$I^k$的无平方单项式生成的$S$的单项式理想。最大的整数$k$使得$I^{[k]}\ne(0)$称为$I$的单项等级,用$\nu(I)$表示。设$d_k$为属于$I^{[k]}$的单项式的最小次。然后,$\text{depth}(S/I^{[k]})\ge d_k-1$为所有$1\le k\le\nu(I)$。归一化深度函数$I$定义为$g_{I}(k)=\text{depth}(S/I^{[k]})-(d_k-1)$, $1\le k\le\nu(I)$。可以预期$g_I(k)$对于任何$I$都是一个不增加的函数。本文研究了$g_{I}(k)$在单项式理想的各种运算下的行为。我们的主要结果表征了所有的弦图$G$,对于$G$的边理想$I(G)$,我们有$g_{I(G)}(1)=0$。它们都是弦图$G$,它们的互补图$G^c$是连通的,并且有一个切顶点。作为一个深远的应用,对于给定的整数$1\le s本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Behaviour of the Normalized Depth Function
Let $I\subset S=K[x_1,\dots,x_n]$ be a squarefree monomial ideal, $K$ a field. The $k$th squarefree power $I^{[k]}$ of $I$ is the monomial ideal of $S$ generated by all squarefree monomials belonging to $I^k$. The biggest integer $k$ such that $I^{[k]}\ne(0)$ is called the monomial grade of $I$ and it is denoted by $\nu(I)$. Let $d_k$ be the minimum degree of the monomials belonging to $I^{[k]}$. Then, $\text{depth}(S/I^{[k]})\ge d_k-1$ for all $1\le k\le\nu(I)$. The normalized depth function of $I$ is defined as $g_{I}(k)=\text{depth}(S/I^{[k]})-(d_k-1)$, $1\le k\le\nu(I)$. It is expected that $g_I(k)$ is a non-increasing function for any $I$. In this article we study the behaviour of $g_{I}(k)$ under various operations on monomial ideals. Our main result characterizes all cochordal graphs $G$ such that for the edge ideal $I(G)$ of $G$ we have $g_{I(G)}(1)=0$. They are precisely all cochordal graphs $G$ whose complementary graph $G^c$ is connected and has a cut vertex. As a far-reaching application, for given integers $1\le s
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信