Tahsine Kosksi, Arem Selmi, S. Mani, Mriem Ben Rhouma, Sana Boughammoura, Latifa Knani, Kaouthar Kessabi, I. Messaoudi
{"title":"褪黑素在帕金森病动物模型中的抗伤害感受作用","authors":"Tahsine Kosksi, Arem Selmi, S. Mani, Mriem Ben Rhouma, Sana Boughammoura, Latifa Knani, Kaouthar Kessabi, I. Messaoudi","doi":"10.32794/mr112500104","DOIUrl":null,"url":null,"abstract":"Several animal experimental and clinical studies have shown the effectiveness of melatonin in the treatment of some symptoms of Parkinson's disease (PD). However, the antinociceptive effect of melatonin against pain associated to PD has not been fully investigated. Thus, the present study investigated the possible antiallodynic and antinociceptive effects of acute and chronic melatonin treatments in Parkinsonian model of rats. This model was created by unilateral injection of 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle (MFB). The electronic von Frey test was used to analyze the antiallodynic effect of melatonin on this PD animal model. In addition, c-Fos immunostaining was also used as a marker of nociception to evaluate the neuronal activity related to the nociception processing. The results showed that unilateral injection of 6-OHDA induced a significant decrease in paw withdrawal threshold in both ipsilateral and contralateral paws, which indicate mechanical allodynia induction. This allodynia was transitorily reversed by apomorphine as a dopamine agonist. Melatonin treatment significantly increased threshold of allodynia. Melatonin administration of both acutely or chronically significantly downregulated the c-Fos expression of neurons in 6-OHDA treated animals. In conclusion, 6-OHDA treatment can induces a bilateral mechanical hypernociception in rats while melatonin treatment produces profound antinociceptive effect. This finding paves the way to use melatonin as an antinociceptive agent for PD clinically.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Antinociceptive effect of melatonin in the animal model of Parkinson’s Disease\",\"authors\":\"Tahsine Kosksi, Arem Selmi, S. Mani, Mriem Ben Rhouma, Sana Boughammoura, Latifa Knani, Kaouthar Kessabi, I. Messaoudi\",\"doi\":\"10.32794/mr112500104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several animal experimental and clinical studies have shown the effectiveness of melatonin in the treatment of some symptoms of Parkinson's disease (PD). However, the antinociceptive effect of melatonin against pain associated to PD has not been fully investigated. Thus, the present study investigated the possible antiallodynic and antinociceptive effects of acute and chronic melatonin treatments in Parkinsonian model of rats. This model was created by unilateral injection of 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle (MFB). The electronic von Frey test was used to analyze the antiallodynic effect of melatonin on this PD animal model. In addition, c-Fos immunostaining was also used as a marker of nociception to evaluate the neuronal activity related to the nociception processing. The results showed that unilateral injection of 6-OHDA induced a significant decrease in paw withdrawal threshold in both ipsilateral and contralateral paws, which indicate mechanical allodynia induction. This allodynia was transitorily reversed by apomorphine as a dopamine agonist. Melatonin treatment significantly increased threshold of allodynia. Melatonin administration of both acutely or chronically significantly downregulated the c-Fos expression of neurons in 6-OHDA treated animals. In conclusion, 6-OHDA treatment can induces a bilateral mechanical hypernociception in rats while melatonin treatment produces profound antinociceptive effect. This finding paves the way to use melatonin as an antinociceptive agent for PD clinically.\",\"PeriodicalId\":18604,\"journal\":{\"name\":\"Melatonin Research\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Melatonin Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32794/mr112500104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melatonin Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32794/mr112500104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Antinociceptive effect of melatonin in the animal model of Parkinson’s Disease
Several animal experimental and clinical studies have shown the effectiveness of melatonin in the treatment of some symptoms of Parkinson's disease (PD). However, the antinociceptive effect of melatonin against pain associated to PD has not been fully investigated. Thus, the present study investigated the possible antiallodynic and antinociceptive effects of acute and chronic melatonin treatments in Parkinsonian model of rats. This model was created by unilateral injection of 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle (MFB). The electronic von Frey test was used to analyze the antiallodynic effect of melatonin on this PD animal model. In addition, c-Fos immunostaining was also used as a marker of nociception to evaluate the neuronal activity related to the nociception processing. The results showed that unilateral injection of 6-OHDA induced a significant decrease in paw withdrawal threshold in both ipsilateral and contralateral paws, which indicate mechanical allodynia induction. This allodynia was transitorily reversed by apomorphine as a dopamine agonist. Melatonin treatment significantly increased threshold of allodynia. Melatonin administration of both acutely or chronically significantly downregulated the c-Fos expression of neurons in 6-OHDA treated animals. In conclusion, 6-OHDA treatment can induces a bilateral mechanical hypernociception in rats while melatonin treatment produces profound antinociceptive effect. This finding paves the way to use melatonin as an antinociceptive agent for PD clinically.