使用基于lstm的自编码器在过程断层扫描中进行测量去噪

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
G. Kłosowski, T. Rymarczyk, D. Wójcik
{"title":"使用基于lstm的自编码器在过程断层扫描中进行测量去噪","authors":"G. Kłosowski, T. Rymarczyk, D. Wójcik","doi":"10.3233/jae-230013","DOIUrl":null,"url":null,"abstract":"The main problem with any tomography is the transformation of measurements into images. It is the so-called “inverse problem,” which, due to its indeterminacy, can never be solved perfectly. An additional factor contributing to the deterioration of the quality of tomograms is measurement noise. This article shows how to denoise electrical capacitance tomography measurements using the LSTM autoencoder. The presented model is two-staged. First, the autoencoder is trained using very noisy measurements. Then, the decoder autoencoder generates a training set to using activations ofe the latent layer. In the second stage, the LSTM network is trained, which has encoder latent layer activations at the input and pattern images at the output. The results of the experiments show that using an autoencoder to denoise the measurements improves the reconstruction quality.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"8 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of an LSTM-based autoencoder for measurement denoising in process tomography\",\"authors\":\"G. Kłosowski, T. Rymarczyk, D. Wójcik\",\"doi\":\"10.3233/jae-230013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main problem with any tomography is the transformation of measurements into images. It is the so-called “inverse problem,” which, due to its indeterminacy, can never be solved perfectly. An additional factor contributing to the deterioration of the quality of tomograms is measurement noise. This article shows how to denoise electrical capacitance tomography measurements using the LSTM autoencoder. The presented model is two-staged. First, the autoencoder is trained using very noisy measurements. Then, the decoder autoencoder generates a training set to using activations ofe the latent layer. In the second stage, the LSTM network is trained, which has encoder latent layer activations at the input and pattern images at the output. The results of the experiments show that using an autoencoder to denoise the measurements improves the reconstruction quality.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230013\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

任何层析成像的主要问题是将测量值转换成图像。这就是所谓的“逆问题”,由于它的不确定性,它永远不可能被完美地解决。导致层析成像质量恶化的另一个因素是测量噪声。本文展示了如何使用LSTM自编码器对电容层析成像测量进行降噪。所提出的模型分为两阶段。首先,自动编码器是使用非常嘈杂的测量来训练的。然后,解码器自编码器生成一个训练集来使用潜在层的激活。在第二阶段,训练LSTM网络,该网络在输入处具有编码器潜在层激活,在输出处具有模式图像。实验结果表明,采用自编码器对测量数据进行去噪,可以提高重建质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The use of an LSTM-based autoencoder for measurement denoising in process tomography
The main problem with any tomography is the transformation of measurements into images. It is the so-called “inverse problem,” which, due to its indeterminacy, can never be solved perfectly. An additional factor contributing to the deterioration of the quality of tomograms is measurement noise. This article shows how to denoise electrical capacitance tomography measurements using the LSTM autoencoder. The presented model is two-staged. First, the autoencoder is trained using very noisy measurements. Then, the decoder autoencoder generates a training set to using activations ofe the latent layer. In the second stage, the LSTM network is trained, which has encoder latent layer activations at the input and pattern images at the output. The results of the experiments show that using an autoencoder to denoise the measurements improves the reconstruction quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信