{"title":"基于遗传算法的太阳能发电最大功率跟踪","authors":"Prakash Kumar, Gaurav Jain, D. K. Palwalia","doi":"10.1109/ICPACE.2015.7274907","DOIUrl":null,"url":null,"abstract":"This paper presents genetic algorithm (GA) based maximum power point tracking (MPPT) for photovoltaic (PV) array integrated with battery storage unit (BSU) as power generation unit in standalone mode. PV generation depends on solar irradiance, site location and environmental factors like temperature, wind and. Thus output of PV output is fluctuating in nature and the addition of non linear load make the situation more critical. GA based MPPT for PV generation works for local optimal solution. DC/DC and boost converter has been used to obtain rated desired rated voltage. BSU acts as secondary source to ensure uninterrupted power supply. A suitable three phase voltage source inverter (VSI), at point of common coupling (PCC), provides regulated power supply. Boost converters incorporating proportional controller (PI) increases PV voltage up to 400V. Conventionally used perturb and observe (PO) algorithm has been used for comparative study. Controlled pulse width modulated (PWM) switching pulse for converter unit and single section LC filter at output terminal eliminates harmonic components. To exhibit the system compatibility resistive, reactive, asynchronous induction motor and nonlinear load has been switched at different instants for variable solar irradiance and temperature.","PeriodicalId":6644,"journal":{"name":"2015 International Conference on Power and Advanced Control Engineering (ICPACE)","volume":"31 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Genetic algorithm based maximum power tracking in solar power generation\",\"authors\":\"Prakash Kumar, Gaurav Jain, D. K. Palwalia\",\"doi\":\"10.1109/ICPACE.2015.7274907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents genetic algorithm (GA) based maximum power point tracking (MPPT) for photovoltaic (PV) array integrated with battery storage unit (BSU) as power generation unit in standalone mode. PV generation depends on solar irradiance, site location and environmental factors like temperature, wind and. Thus output of PV output is fluctuating in nature and the addition of non linear load make the situation more critical. GA based MPPT for PV generation works for local optimal solution. DC/DC and boost converter has been used to obtain rated desired rated voltage. BSU acts as secondary source to ensure uninterrupted power supply. A suitable three phase voltage source inverter (VSI), at point of common coupling (PCC), provides regulated power supply. Boost converters incorporating proportional controller (PI) increases PV voltage up to 400V. Conventionally used perturb and observe (PO) algorithm has been used for comparative study. Controlled pulse width modulated (PWM) switching pulse for converter unit and single section LC filter at output terminal eliminates harmonic components. To exhibit the system compatibility resistive, reactive, asynchronous induction motor and nonlinear load has been switched at different instants for variable solar irradiance and temperature.\",\"PeriodicalId\":6644,\"journal\":{\"name\":\"2015 International Conference on Power and Advanced Control Engineering (ICPACE)\",\"volume\":\"31 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Power and Advanced Control Engineering (ICPACE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPACE.2015.7274907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Power and Advanced Control Engineering (ICPACE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPACE.2015.7274907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic algorithm based maximum power tracking in solar power generation
This paper presents genetic algorithm (GA) based maximum power point tracking (MPPT) for photovoltaic (PV) array integrated with battery storage unit (BSU) as power generation unit in standalone mode. PV generation depends on solar irradiance, site location and environmental factors like temperature, wind and. Thus output of PV output is fluctuating in nature and the addition of non linear load make the situation more critical. GA based MPPT for PV generation works for local optimal solution. DC/DC and boost converter has been used to obtain rated desired rated voltage. BSU acts as secondary source to ensure uninterrupted power supply. A suitable three phase voltage source inverter (VSI), at point of common coupling (PCC), provides regulated power supply. Boost converters incorporating proportional controller (PI) increases PV voltage up to 400V. Conventionally used perturb and observe (PO) algorithm has been used for comparative study. Controlled pulse width modulated (PWM) switching pulse for converter unit and single section LC filter at output terminal eliminates harmonic components. To exhibit the system compatibility resistive, reactive, asynchronous induction motor and nonlinear load has been switched at different instants for variable solar irradiance and temperature.