双自由概率中的独立性和偏R变换

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
P. Skoufranis
{"title":"双自由概率中的独立性和偏R变换","authors":"P. Skoufranis","doi":"10.1214/15-AIHP691","DOIUrl":null,"url":null,"abstract":"In this paper, we examine how various notions of independence in non-commutative probability theory arise in bi-free probability. We exhibit how Boolean and monotone independence occur from bi-free pairs of faces and establish a Kac/Loeve Theorem for bi-free independence. In addition, we prove that bi-freeness is preserved under tensoring with matrices. Finally, via combinatorial arguments, we construct partial $R$-transforms in two settings relating the moments and cumulants of a left-right pair of operators.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"82 1","pages":"1437-1473"},"PeriodicalIF":1.2000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Independences and partial $R$-transforms in bi-free probability\",\"authors\":\"P. Skoufranis\",\"doi\":\"10.1214/15-AIHP691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examine how various notions of independence in non-commutative probability theory arise in bi-free probability. We exhibit how Boolean and monotone independence occur from bi-free pairs of faces and establish a Kac/Loeve Theorem for bi-free independence. In addition, we prove that bi-freeness is preserved under tensoring with matrices. Finally, via combinatorial arguments, we construct partial $R$-transforms in two settings relating the moments and cumulants of a left-right pair of operators.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"82 1\",\"pages\":\"1437-1473\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/15-AIHP691\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP691","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 25

摘要

本文研究了非交换概率论中各种独立概念是如何在双自由概率中出现的。我们展示了布尔独立性和单调独立性是如何从双自由面对发生的,并建立了双自由独立性的Kac/Loeve定理。此外,我们还证明了在矩阵张拉条件下双自由性是保持的。最后,通过组合论证,我们构造了关于一个左右算子对的矩量和累积量的两种情况下的偏R变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independences and partial $R$-transforms in bi-free probability
In this paper, we examine how various notions of independence in non-commutative probability theory arise in bi-free probability. We exhibit how Boolean and monotone independence occur from bi-free pairs of faces and establish a Kac/Loeve Theorem for bi-free independence. In addition, we prove that bi-freeness is preserved under tensoring with matrices. Finally, via combinatorial arguments, we construct partial $R$-transforms in two settings relating the moments and cumulants of a left-right pair of operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信