基于几何表示学习的文档图像校正

Hao Feng, Wen-gang Zhou, Jiajun Deng, Yuechen Wang, Houqiang Li
{"title":"基于几何表示学习的文档图像校正","authors":"Hao Feng, Wen-gang Zhou, Jiajun Deng, Yuechen Wang, Houqiang Li","doi":"10.48550/arXiv.2210.08161","DOIUrl":null,"url":null,"abstract":"In document image rectification, there exist rich geometric constraints between the distorted image and the ground truth one. However, such geometric constraints are largely ignored in existing advanced solutions, which limits the rectification performance. To this end, we present DocGeoNet for document image rectification by introducing explicit geometric representation. Technically, two typical attributes of the document image are involved in the proposed geometric representation learning, i.e., 3D shape and textlines. Our motivation arises from the insight that 3D shape provides global unwarping cues for rectifying a distorted document image while overlooking the local structure. On the other hand, textlines complementarily provide explicit geometric constraints for local patterns. The learned geometric representation effectively bridges the distorted image and the ground truth one. Extensive experiments show the effectiveness of our framework and demonstrate the superiority of our DocGeoNet over state-of-the-art methods on both the DocUNet Benchmark dataset and our proposed DIR300 test set. The code is available at https://github.com/fh2019ustc/DocGeoNet.","PeriodicalId":72676,"journal":{"name":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","volume":"607 1","pages":"475-492"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Geometric Representation Learning for Document Image Rectification\",\"authors\":\"Hao Feng, Wen-gang Zhou, Jiajun Deng, Yuechen Wang, Houqiang Li\",\"doi\":\"10.48550/arXiv.2210.08161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In document image rectification, there exist rich geometric constraints between the distorted image and the ground truth one. However, such geometric constraints are largely ignored in existing advanced solutions, which limits the rectification performance. To this end, we present DocGeoNet for document image rectification by introducing explicit geometric representation. Technically, two typical attributes of the document image are involved in the proposed geometric representation learning, i.e., 3D shape and textlines. Our motivation arises from the insight that 3D shape provides global unwarping cues for rectifying a distorted document image while overlooking the local structure. On the other hand, textlines complementarily provide explicit geometric constraints for local patterns. The learned geometric representation effectively bridges the distorted image and the ground truth one. Extensive experiments show the effectiveness of our framework and demonstrate the superiority of our DocGeoNet over state-of-the-art methods on both the DocUNet Benchmark dataset and our proposed DIR300 test set. The code is available at https://github.com/fh2019ustc/DocGeoNet.\",\"PeriodicalId\":72676,\"journal\":{\"name\":\"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision\",\"volume\":\"607 1\",\"pages\":\"475-492\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.08161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer vision - ECCV ... : ... European Conference on Computer Vision : proceedings. European Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.08161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在文档图像校正中,失真图像与地面真实图像之间存在着丰富的几何约束。然而,在现有的先进解决方案中,这种几何约束在很大程度上被忽略,从而限制了整流性能。为此,我们通过引入显式几何表示,提出了用于文档图像校正的DocGeoNet。从技术上讲,所提出的几何表示学习涉及文档图像的两个典型属性,即3D形状和文本线。我们的动机源于这样一种见解,即3D形状为纠正扭曲的文档图像提供了全局解扭曲线索,同时忽略了局部结构。另一方面,文本线补充地为局部模式提供明确的几何约束。学习到的几何表示有效地连接了扭曲图像和真实图像。大量的实验表明了我们的框架的有效性,并证明了我们的DocGeoNet在DocUNet基准数据集和我们提出的DIR300测试集上优于最先进的方法。代码可在https://github.com/fh2019ustc/DocGeoNet上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Representation Learning for Document Image Rectification
In document image rectification, there exist rich geometric constraints between the distorted image and the ground truth one. However, such geometric constraints are largely ignored in existing advanced solutions, which limits the rectification performance. To this end, we present DocGeoNet for document image rectification by introducing explicit geometric representation. Technically, two typical attributes of the document image are involved in the proposed geometric representation learning, i.e., 3D shape and textlines. Our motivation arises from the insight that 3D shape provides global unwarping cues for rectifying a distorted document image while overlooking the local structure. On the other hand, textlines complementarily provide explicit geometric constraints for local patterns. The learned geometric representation effectively bridges the distorted image and the ground truth one. Extensive experiments show the effectiveness of our framework and demonstrate the superiority of our DocGeoNet over state-of-the-art methods on both the DocUNet Benchmark dataset and our proposed DIR300 test set. The code is available at https://github.com/fh2019ustc/DocGeoNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信