{"title":"聚(2-氨基苯甲酸)-混合芦荟对人乳腺癌细胞系MDA-MB-231的抗癌潜力","authors":"J. Sebastian, Jhancy Mary Samuel","doi":"10.1177/08839115221138772","DOIUrl":null,"url":null,"abstract":"Breast cancer in women is amongst the most significant concerns from time immemorial in the field of oncology. This study proposes an anticancerous polymeric material based on an electroactive substituted polyaniline blend, poly(2-aminobenzoic acid)-blend-Aloe vera (PABA/AV) synthesized by the emulsion polymerization method. The structural, thermal, and morphological characteristics determined using FT-IR and UV-Visible Spectroscopy, XRD, TGA, DTA, and SEM-EDX validated the thermally stable, semi-crystalline, emeraldine salt structure. The material is semi-conducting, and the electrical conductivity measured is 1.86 × 10−3 S/cm. It shows bactericidal efficacy against Enterococcus faecalis at a minimum inhibitory and minimum bactericidal concentration of 50 μg/mL. The radical cations in the emeraldine polymer chain reduce the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and exhibit a significant % of DPPH scavenging (89.85%) at 20 μL. The polymer blend is active against the human breast cancer cell line MDA-MB-231 and causes 78.65% cytotoxicity at a concentration of 125 μg/mL. The synergistic effect of the ancient healing Aloe vera plant and the electroactive biocompatible poly(2-aminobenzoic acid) certainly opens up new developments in the field of cancer therapy.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"29 1","pages":"58 - 73"},"PeriodicalIF":2.1000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Anticancer potential of poly(2-aminobenzoic acid)-blend-Aloe vera against the human breast cancer cell line MDA-MB-231\",\"authors\":\"J. Sebastian, Jhancy Mary Samuel\",\"doi\":\"10.1177/08839115221138772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer in women is amongst the most significant concerns from time immemorial in the field of oncology. This study proposes an anticancerous polymeric material based on an electroactive substituted polyaniline blend, poly(2-aminobenzoic acid)-blend-Aloe vera (PABA/AV) synthesized by the emulsion polymerization method. The structural, thermal, and morphological characteristics determined using FT-IR and UV-Visible Spectroscopy, XRD, TGA, DTA, and SEM-EDX validated the thermally stable, semi-crystalline, emeraldine salt structure. The material is semi-conducting, and the electrical conductivity measured is 1.86 × 10−3 S/cm. It shows bactericidal efficacy against Enterococcus faecalis at a minimum inhibitory and minimum bactericidal concentration of 50 μg/mL. The radical cations in the emeraldine polymer chain reduce the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and exhibit a significant % of DPPH scavenging (89.85%) at 20 μL. The polymer blend is active against the human breast cancer cell line MDA-MB-231 and causes 78.65% cytotoxicity at a concentration of 125 μg/mL. The synergistic effect of the ancient healing Aloe vera plant and the electroactive biocompatible poly(2-aminobenzoic acid) certainly opens up new developments in the field of cancer therapy.\",\"PeriodicalId\":15038,\"journal\":{\"name\":\"Journal of Bioactive and Compatible Polymers\",\"volume\":\"29 1\",\"pages\":\"58 - 73\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioactive and Compatible Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08839115221138772\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115221138772","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Anticancer potential of poly(2-aminobenzoic acid)-blend-Aloe vera against the human breast cancer cell line MDA-MB-231
Breast cancer in women is amongst the most significant concerns from time immemorial in the field of oncology. This study proposes an anticancerous polymeric material based on an electroactive substituted polyaniline blend, poly(2-aminobenzoic acid)-blend-Aloe vera (PABA/AV) synthesized by the emulsion polymerization method. The structural, thermal, and morphological characteristics determined using FT-IR and UV-Visible Spectroscopy, XRD, TGA, DTA, and SEM-EDX validated the thermally stable, semi-crystalline, emeraldine salt structure. The material is semi-conducting, and the electrical conductivity measured is 1.86 × 10−3 S/cm. It shows bactericidal efficacy against Enterococcus faecalis at a minimum inhibitory and minimum bactericidal concentration of 50 μg/mL. The radical cations in the emeraldine polymer chain reduce the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and exhibit a significant % of DPPH scavenging (89.85%) at 20 μL. The polymer blend is active against the human breast cancer cell line MDA-MB-231 and causes 78.65% cytotoxicity at a concentration of 125 μg/mL. The synergistic effect of the ancient healing Aloe vera plant and the electroactive biocompatible poly(2-aminobenzoic acid) certainly opens up new developments in the field of cancer therapy.
期刊介绍:
The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).