事务数据库中的相似关联模式挖掘

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Data Pub Date : 2021-04-05 DOI:10.1145/3460620.3460752
M. PhridviRaj, C. V. Rao, V. Radhakrishna, Aravind Cheruvu
{"title":"事务数据库中的相似关联模式挖掘","authors":"M. PhridviRaj, C. V. Rao, V. Radhakrishna, Aravind Cheruvu","doi":"10.1145/3460620.3460752","DOIUrl":null,"url":null,"abstract":"Association pattern mining is a method of finding interesting relationships or patterns between item sets present in each of the transactions of the transactional databases. Current researchers in this area are focusing on the data mining task of finding frequent patterns among the item sets based on the interestingness measures like the support and confidence which is called as Frequent pattern mining. Till date, in existing frequent pattern mining algorithms, an itemset is said to be frequent if the support of the itemset satisfies the minimum support input. In this paper, the objective of our algorithm is to find interesting patterns among the item sets based on a Gaussian similarity for an input reference threshold which is first of its kind in the research literature. This study is limited to outlining naïve approach of mining frequent itemsets which requires validating every itemset to verify if the itemset is frequent or not.","PeriodicalId":36824,"journal":{"name":"Data","volume":"86 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity Association Pattern Mining in Transaction Databases\",\"authors\":\"M. PhridviRaj, C. V. Rao, V. Radhakrishna, Aravind Cheruvu\",\"doi\":\"10.1145/3460620.3460752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Association pattern mining is a method of finding interesting relationships or patterns between item sets present in each of the transactions of the transactional databases. Current researchers in this area are focusing on the data mining task of finding frequent patterns among the item sets based on the interestingness measures like the support and confidence which is called as Frequent pattern mining. Till date, in existing frequent pattern mining algorithms, an itemset is said to be frequent if the support of the itemset satisfies the minimum support input. In this paper, the objective of our algorithm is to find interesting patterns among the item sets based on a Gaussian similarity for an input reference threshold which is first of its kind in the research literature. This study is limited to outlining naïve approach of mining frequent itemsets which requires validating every itemset to verify if the itemset is frequent or not.\",\"PeriodicalId\":36824,\"journal\":{\"name\":\"Data\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1145/3460620.3460752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3460620.3460752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

关联模式挖掘是一种在事务数据库的每个事务中存在的项集之间查找有趣关系或模式的方法。目前该领域的研究主要集中在基于支持度和置信度等兴趣度度量在项目集中发现频繁模式的数据挖掘任务,称为频繁模式挖掘。到目前为止,在现有的频繁模式挖掘算法中,如果一个项目集的支持度满足最小支持度输入,那么该项目集就是频繁的。在本文中,我们的算法的目标是基于输入参考阈值的高斯相似度在项目集中找到有趣的模式,这在研究文献中是第一次。本研究仅限于概述naïve挖掘频繁项目集的方法,该方法需要验证每个项目集以验证项目集是否频繁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity Association Pattern Mining in Transaction Databases
Association pattern mining is a method of finding interesting relationships or patterns between item sets present in each of the transactions of the transactional databases. Current researchers in this area are focusing on the data mining task of finding frequent patterns among the item sets based on the interestingness measures like the support and confidence which is called as Frequent pattern mining. Till date, in existing frequent pattern mining algorithms, an itemset is said to be frequent if the support of the itemset satisfies the minimum support input. In this paper, the objective of our algorithm is to find interesting patterns among the item sets based on a Gaussian similarity for an input reference threshold which is first of its kind in the research literature. This study is limited to outlining naïve approach of mining frequent itemsets which requires validating every itemset to verify if the itemset is frequent or not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信