液压衬套的实验动态流动特性

IF 1.3 4区 医学 Q3 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY
Kenneth DeGarmo, M. Kennedy, Luke Fredette
{"title":"液压衬套的实验动态流动特性","authors":"Kenneth DeGarmo, M. Kennedy, Luke Fredette","doi":"10.3397/nc_2023_0130","DOIUrl":null,"url":null,"abstract":"The dynamic properties of hydraulic bushings are often modeled in the time and frequency domains with low-order, lumped-parameter models, typically assuming steady, developed flow in their fluid passages, whereas in situ flow conditions are unlikely to meet such criteria. Hydraulic\n bushings exhibit tuned properties emerging from nonlinear interactions involving these flow characteristics, so higher resolution descriptions of the underlying physics are needed under realistic flow conditions. This paper discusses an approach to isolate the fluid passage features in production\n bushings to enable experimental characterization for steady, oscillatory, and transient flow. More robust models of dynamic responses in the time and frequency domains are expected to result from this more precise determination of each flow path's contribution to the nonlinear system response.\n An apparatus capable of generating steady and dynamic flow is proposed, and some validation data is given to demonstrate the functionality of the experiment. Some challenges with the approach are considered, including the system's hydraulic compliance and cavitation. The flow testing apparatus\n is used on an example two-passage production bushing adapted for controlled steady or dynamic flow through one or both flow paths. Finally, some nonlinear flow properties of a typical hydraulic bushing's flow passages are given.","PeriodicalId":19195,"journal":{"name":"Noise & Health","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental dynamic flow characterization of hydraulic bushings\",\"authors\":\"Kenneth DeGarmo, M. Kennedy, Luke Fredette\",\"doi\":\"10.3397/nc_2023_0130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic properties of hydraulic bushings are often modeled in the time and frequency domains with low-order, lumped-parameter models, typically assuming steady, developed flow in their fluid passages, whereas in situ flow conditions are unlikely to meet such criteria. Hydraulic\\n bushings exhibit tuned properties emerging from nonlinear interactions involving these flow characteristics, so higher resolution descriptions of the underlying physics are needed under realistic flow conditions. This paper discusses an approach to isolate the fluid passage features in production\\n bushings to enable experimental characterization for steady, oscillatory, and transient flow. More robust models of dynamic responses in the time and frequency domains are expected to result from this more precise determination of each flow path's contribution to the nonlinear system response.\\n An apparatus capable of generating steady and dynamic flow is proposed, and some validation data is given to demonstrate the functionality of the experiment. Some challenges with the approach are considered, including the system's hydraulic compliance and cavitation. The flow testing apparatus\\n is used on an example two-passage production bushing adapted for controlled steady or dynamic flow through one or both flow paths. Finally, some nonlinear flow properties of a typical hydraulic bushing's flow passages are given.\",\"PeriodicalId\":19195,\"journal\":{\"name\":\"Noise & Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise & Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3397/nc_2023_0130\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise & Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3397/nc_2023_0130","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

液压衬套的动态特性通常在时间和频率域中用低阶、集中参数模型建模,通常假设其流体通道中有稳定、发达的流动,而现场流动条件不太可能满足这些标准。液压衬套在涉及这些流动特性的非线性相互作用中表现出调谐特性,因此需要在实际流动条件下对底层物理进行更高分辨率的描述。本文讨论了一种分离生产衬套中流体通道特征的方法,以便对稳定、振荡和瞬态流动进行实验表征。通过更精确地确定每个流道对非线性系统响应的贡献,期望在时间和频率域中产生更强大的动态响应模型。提出了一种能够产生稳态和动态流动的装置,并给出了一些验证数据来证明实验的功能。该方法面临一些挑战,包括系统的水力顺应性和空化。流量测试装置用于示例双通道生产衬套,适用于通过一个或两个流道的受控稳定或动态流动。最后给出了典型液压衬套流道的非线性流动特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental dynamic flow characterization of hydraulic bushings
The dynamic properties of hydraulic bushings are often modeled in the time and frequency domains with low-order, lumped-parameter models, typically assuming steady, developed flow in their fluid passages, whereas in situ flow conditions are unlikely to meet such criteria. Hydraulic bushings exhibit tuned properties emerging from nonlinear interactions involving these flow characteristics, so higher resolution descriptions of the underlying physics are needed under realistic flow conditions. This paper discusses an approach to isolate the fluid passage features in production bushings to enable experimental characterization for steady, oscillatory, and transient flow. More robust models of dynamic responses in the time and frequency domains are expected to result from this more precise determination of each flow path's contribution to the nonlinear system response. An apparatus capable of generating steady and dynamic flow is proposed, and some validation data is given to demonstrate the functionality of the experiment. Some challenges with the approach are considered, including the system's hydraulic compliance and cavitation. The flow testing apparatus is used on an example two-passage production bushing adapted for controlled steady or dynamic flow through one or both flow paths. Finally, some nonlinear flow properties of a typical hydraulic bushing's flow passages are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Noise & Health
Noise & Health AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY-PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
CiteScore
2.10
自引率
14.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: Noise and Health is the only International Journal devoted to research on all aspects of noise and its effects on human health. An inter-disciplinary journal for all professions concerned with auditory and non-auditory effects of occupational, environmental, and leisure noise. It aims to provide a forum for presentation of novel research material on a broad range of topics associated with noise pollution, its control and its detrimental effects on hearing and health. It will cover issues from basic experimental science through clinical evaluation and management, technical aspects of noise reduction systems and solutions to environmental issues relating to social and public health policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信