{"title":"拓扑函子和右伴随","authors":"Harvey Wolff","doi":"10.1016/0016-660X(78)90054-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>T</em>:<span><math><mtext>A</mtext></math></span> → <span><math><mtext>L</mtext></math></span> be an (<span><math><mtext>L</mtext></math></span>, <span><math><mtext>M</mtext></math></span>)-topological functor and <em>S</em>:<span><math><mtext>B</mtext></math></span> → <span><math><mtext>Y</mtext></math></span> a faithful functor. Let <em>F</em>:<span><math><mtext>L</mtext></math></span> → <span><math><mtext>Y</mtext></math></span> and <em>L</em>:<span><math><mtext>A</mtext></math></span> → <span><math><mtext>B</mtext></math></span> be functors with <em>a</em>:<em>FT</em> → <em>SL</em> an epi natural transformation. We are concerned with the question of when <em>L</em> has a right adjoint given that <em>F</em> has a right adjoint. We give two characterizations of the existence of a right adjoint to <em>L</em>. One involves just the “topological data” and the other is an application of Freyd's adjoint functor theorem. As a consequence, we characterize when a category which is monoidal and (<span><math><mtext>L</mtext></math></span>, <span><math><mtext>M</mtext></math></span>)-topological over a monoidal closed category is also closed.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"9 2","pages":"Pages 101-110"},"PeriodicalIF":0.0000,"publicationDate":"1978-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90054-5","citationCount":"5","resultStr":"{\"title\":\"Topological functors and right adjoints\",\"authors\":\"Harvey Wolff\",\"doi\":\"10.1016/0016-660X(78)90054-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>T</em>:<span><math><mtext>A</mtext></math></span> → <span><math><mtext>L</mtext></math></span> be an (<span><math><mtext>L</mtext></math></span>, <span><math><mtext>M</mtext></math></span>)-topological functor and <em>S</em>:<span><math><mtext>B</mtext></math></span> → <span><math><mtext>Y</mtext></math></span> a faithful functor. Let <em>F</em>:<span><math><mtext>L</mtext></math></span> → <span><math><mtext>Y</mtext></math></span> and <em>L</em>:<span><math><mtext>A</mtext></math></span> → <span><math><mtext>B</mtext></math></span> be functors with <em>a</em>:<em>FT</em> → <em>SL</em> an epi natural transformation. We are concerned with the question of when <em>L</em> has a right adjoint given that <em>F</em> has a right adjoint. We give two characterizations of the existence of a right adjoint to <em>L</em>. One involves just the “topological data” and the other is an application of Freyd's adjoint functor theorem. As a consequence, we characterize when a category which is monoidal and (<span><math><mtext>L</mtext></math></span>, <span><math><mtext>M</mtext></math></span>)-topological over a monoidal closed category is also closed.</p></div>\",\"PeriodicalId\":100574,\"journal\":{\"name\":\"General Topology and its Applications\",\"volume\":\"9 2\",\"pages\":\"Pages 101-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0016-660X(78)90054-5\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Topology and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0016660X78900545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let T: → be an (, )-topological functor and S: → a faithful functor. Let F: → and L: → be functors with a:FT → SL an epi natural transformation. We are concerned with the question of when L has a right adjoint given that F has a right adjoint. We give two characterizations of the existence of a right adjoint to L. One involves just the “topological data” and the other is an application of Freyd's adjoint functor theorem. As a consequence, we characterize when a category which is monoidal and (, )-topological over a monoidal closed category is also closed.