为优化液相晶体硅薄膜太阳能电池的光耦合定制纳米结构

G. Köppel, D. Eisenhauer, B. Rech, C. Becker
{"title":"为优化液相晶体硅薄膜太阳能电池的光耦合定制纳米结构","authors":"G. Köppel, D. Eisenhauer, B. Rech, C. Becker","doi":"10.1002/PSSC.201700175","DOIUrl":null,"url":null,"abstract":"Thin-film solar cells based on liquid phase crystallized silicon (LPC Si) with 8–20 μm thick absorber layers demand for advanced light management to achieve high photocurrent densities. Open-circuit voltages (Voc) >600 mV underline the high silicon material quality of LPC silicon thin-films on nano-textured glass superstrates. We present a 500 nm-pitched sinusoidal nano-texture which outperforms larger pitched gratings with respect to light in-coupling at the buried glass-silicon interface. In the wavelength range of interest reflection of incident light is minimized to values close to 4%, which is the reflection at the sun-facing air-glass interface. Further, the electronic material quality of sinusoidally textured devices is analyzed on basis of a comparison of maximum achieved open-circuit voltages on different texture types. The Voc on sinusoidally textured glass superstrates could be raised to 630 mV by changing the interlayer deposition method from a PVD to a PECVD process. Thus, we are able to unify high optical and electronic properties of silicon absorber layers on sinusoidaly textured glass substrates. These results constitute a crucial step toward fully exploiting the optical potential of LPC silicon thin-film solar cells.","PeriodicalId":20065,"journal":{"name":"Physica Status Solidi (c)","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tailoring Nano-Textures for Optimized Light In-Coupling in Liquid Phase Crystallized Silicon Thin-Film Solar Cells\",\"authors\":\"G. Köppel, D. Eisenhauer, B. Rech, C. Becker\",\"doi\":\"10.1002/PSSC.201700175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin-film solar cells based on liquid phase crystallized silicon (LPC Si) with 8–20 μm thick absorber layers demand for advanced light management to achieve high photocurrent densities. Open-circuit voltages (Voc) >600 mV underline the high silicon material quality of LPC silicon thin-films on nano-textured glass superstrates. We present a 500 nm-pitched sinusoidal nano-texture which outperforms larger pitched gratings with respect to light in-coupling at the buried glass-silicon interface. In the wavelength range of interest reflection of incident light is minimized to values close to 4%, which is the reflection at the sun-facing air-glass interface. Further, the electronic material quality of sinusoidally textured devices is analyzed on basis of a comparison of maximum achieved open-circuit voltages on different texture types. The Voc on sinusoidally textured glass superstrates could be raised to 630 mV by changing the interlayer deposition method from a PVD to a PECVD process. Thus, we are able to unify high optical and electronic properties of silicon absorber layers on sinusoidaly textured glass substrates. These results constitute a crucial step toward fully exploiting the optical potential of LPC silicon thin-film solar cells.\",\"PeriodicalId\":20065,\"journal\":{\"name\":\"Physica Status Solidi (c)\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi (c)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/PSSC.201700175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi (c)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PSSC.201700175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

具有8-20 μm厚吸收层的LPC硅薄膜太阳能电池需要先进的光管理来实现高光电流密度。当开路电压(Voc) >600 mV时,表明LPC硅薄膜的硅材料质量高。我们提出了一种500 nm的正弦纳米纹理,它在埋置玻璃硅界面的光耦合方面优于较大的倾斜光栅。在感兴趣的波长范围内,入射光的反射被最小化到接近4%的值,这是在面向太阳的空气-玻璃界面上的反射。此外,通过比较不同织构类型所获得的最大开路电压,分析了正弦织构器件的电子材料质量。将层间沉积方法由PVD工艺改为PECVD工艺,可将正弦波织构玻璃衬底上的Voc提高到630 mV。因此,我们能够统一高光学和电子性质的硅吸收层在正弦波纹理玻璃基板。这些结果是充分开发LPC硅薄膜太阳能电池光学潜力的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring Nano-Textures for Optimized Light In-Coupling in Liquid Phase Crystallized Silicon Thin-Film Solar Cells
Thin-film solar cells based on liquid phase crystallized silicon (LPC Si) with 8–20 μm thick absorber layers demand for advanced light management to achieve high photocurrent densities. Open-circuit voltages (Voc) >600 mV underline the high silicon material quality of LPC silicon thin-films on nano-textured glass superstrates. We present a 500 nm-pitched sinusoidal nano-texture which outperforms larger pitched gratings with respect to light in-coupling at the buried glass-silicon interface. In the wavelength range of interest reflection of incident light is minimized to values close to 4%, which is the reflection at the sun-facing air-glass interface. Further, the electronic material quality of sinusoidally textured devices is analyzed on basis of a comparison of maximum achieved open-circuit voltages on different texture types. The Voc on sinusoidally textured glass superstrates could be raised to 630 mV by changing the interlayer deposition method from a PVD to a PECVD process. Thus, we are able to unify high optical and electronic properties of silicon absorber layers on sinusoidaly textured glass substrates. These results constitute a crucial step toward fully exploiting the optical potential of LPC silicon thin-film solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信