Bruno Lacerda, Anna Gautier, Alex Rutherford, A. Stephens, Charlie Street, N. Hawes
{"title":"多机器人系统的不确定决策","authors":"Bruno Lacerda, Anna Gautier, Alex Rutherford, A. Stephens, Charlie Street, N. Hawes","doi":"10.3233/aic-220118","DOIUrl":null,"url":null,"abstract":"In this overview paper, we present the work of the Goal-Oriented Long-Lived Systems Lab on multi-robot systems. We address multi-robot systems from a decision-making under uncertainty perspective, proposing approaches that explicitly reason about the inherent uncertainty of action execution, and how such stochasticity affects multi-robot coordination. To develop effective decision-making approaches, we take a special focus on (i) temporal uncertainty, in particular of action execution; (ii) the ability to provide rich guarantees of performance, both at a local (robot) level and at a global (team) level; and (iii) scaling up to systems with real-world impact. We summarise several pieces of work and highlight how they address the challenges above, and also hint at future research directions.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"3 1","pages":"433-441"},"PeriodicalIF":1.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Decision-making under uncertainty for multi-robot systems\",\"authors\":\"Bruno Lacerda, Anna Gautier, Alex Rutherford, A. Stephens, Charlie Street, N. Hawes\",\"doi\":\"10.3233/aic-220118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this overview paper, we present the work of the Goal-Oriented Long-Lived Systems Lab on multi-robot systems. We address multi-robot systems from a decision-making under uncertainty perspective, proposing approaches that explicitly reason about the inherent uncertainty of action execution, and how such stochasticity affects multi-robot coordination. To develop effective decision-making approaches, we take a special focus on (i) temporal uncertainty, in particular of action execution; (ii) the ability to provide rich guarantees of performance, both at a local (robot) level and at a global (team) level; and (iii) scaling up to systems with real-world impact. We summarise several pieces of work and highlight how they address the challenges above, and also hint at future research directions.\",\"PeriodicalId\":50835,\"journal\":{\"name\":\"AI Communications\",\"volume\":\"3 1\",\"pages\":\"433-441\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/aic-220118\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-220118","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Decision-making under uncertainty for multi-robot systems
In this overview paper, we present the work of the Goal-Oriented Long-Lived Systems Lab on multi-robot systems. We address multi-robot systems from a decision-making under uncertainty perspective, proposing approaches that explicitly reason about the inherent uncertainty of action execution, and how such stochasticity affects multi-robot coordination. To develop effective decision-making approaches, we take a special focus on (i) temporal uncertainty, in particular of action execution; (ii) the ability to provide rich guarantees of performance, both at a local (robot) level and at a global (team) level; and (iii) scaling up to systems with real-world impact. We summarise several pieces of work and highlight how they address the challenges above, and also hint at future research directions.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.