{"title":"栅极溶液AlGaN/GaN高电子迁移率晶体管的电荷输运模型","authors":"A. Asgari, L. R. Bonab","doi":"10.1109/INEC.2010.5424659","DOIUrl":null,"url":null,"abstract":"In this article, a transport model of gate solution AlGaN/GaN high electron mobility transistor has been developed that is capable of accurately predicting the sensitivity of the drain current as well as small-signal parameters such as drain conductance, device transconductance and cutoff frequency to PH values of the electrolyte and to charged adsorbents at the semiconductor-electrolyte interface. This model built up with incorporation of fully and partially occupied sub-bands in the interface quantum well, combined with a numerically self-consistent solution of the Schrödinger and Poisson equations. In addition, the polarization effects, and self-heating are also taken into account.","PeriodicalId":6390,"journal":{"name":"2010 3rd International Nanoelectronics Conference (INEC)","volume":"51 1","pages":"664-665"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge transport model of gate solution AlGaN/GaN high electron mobility transistors\",\"authors\":\"A. Asgari, L. R. Bonab\",\"doi\":\"10.1109/INEC.2010.5424659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a transport model of gate solution AlGaN/GaN high electron mobility transistor has been developed that is capable of accurately predicting the sensitivity of the drain current as well as small-signal parameters such as drain conductance, device transconductance and cutoff frequency to PH values of the electrolyte and to charged adsorbents at the semiconductor-electrolyte interface. This model built up with incorporation of fully and partially occupied sub-bands in the interface quantum well, combined with a numerically self-consistent solution of the Schrödinger and Poisson equations. In addition, the polarization effects, and self-heating are also taken into account.\",\"PeriodicalId\":6390,\"journal\":{\"name\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"volume\":\"51 1\",\"pages\":\"664-665\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INEC.2010.5424659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2010.5424659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Charge transport model of gate solution AlGaN/GaN high electron mobility transistors
In this article, a transport model of gate solution AlGaN/GaN high electron mobility transistor has been developed that is capable of accurately predicting the sensitivity of the drain current as well as small-signal parameters such as drain conductance, device transconductance and cutoff frequency to PH values of the electrolyte and to charged adsorbents at the semiconductor-electrolyte interface. This model built up with incorporation of fully and partially occupied sub-bands in the interface quantum well, combined with a numerically self-consistent solution of the Schrödinger and Poisson equations. In addition, the polarization effects, and self-heating are also taken into account.