椭圆轨道上变长质心双摆的参数稳定性

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
José Laudelino de Menezes Neto, G. C. Araujo, Yocelyn Pérez Rothen, C. Vidal
{"title":"椭圆轨道上变长质心双摆的参数稳定性","authors":"José Laudelino de Menezes Neto, G. C. Araujo, Yocelyn Pérez Rothen, C. Vidal","doi":"10.3934/jgm.2021031","DOIUrl":null,"url":null,"abstract":"We consider the planar double pendulum where its center of mass is attached in an elliptic orbit. We consider the case where the rods of the pendulum have variable length, varying according to the radius vector of the elliptic orbit. We make an Hamiltonian view of the problem, find four linearly stable equilibrium positions and construct the boundary curves of the stability/instability regions in the space of the parameters associated with the pendulum length and the eccentricity of the orbit.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"12 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parametric stability of a double pendulum with variable length and with its center of mass in an elliptic orbit\",\"authors\":\"José Laudelino de Menezes Neto, G. C. Araujo, Yocelyn Pérez Rothen, C. Vidal\",\"doi\":\"10.3934/jgm.2021031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the planar double pendulum where its center of mass is attached in an elliptic orbit. We consider the case where the rods of the pendulum have variable length, varying according to the radius vector of the elliptic orbit. We make an Hamiltonian view of the problem, find four linearly stable equilibrium positions and construct the boundary curves of the stability/instability regions in the space of the parameters associated with the pendulum length and the eccentricity of the orbit.\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jgm.2021031\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2021031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑一个平面双摆,它的质心附着在一个椭圆轨道上。我们考虑摆杆的长度随椭圆轨道的半径矢量而变化的情况。我们用哈密顿的观点来看待这个问题,找到了四个线性稳定的平衡位置,并在与摆长和轨道偏心率相关的参数空间中构造了稳定/不稳定区域的边界曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric stability of a double pendulum with variable length and with its center of mass in an elliptic orbit
We consider the planar double pendulum where its center of mass is attached in an elliptic orbit. We consider the case where the rods of the pendulum have variable length, varying according to the radius vector of the elliptic orbit. We make an Hamiltonian view of the problem, find four linearly stable equilibrium positions and construct the boundary curves of the stability/instability regions in the space of the parameters associated with the pendulum length and the eccentricity of the orbit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信