碱性高锰酸钾氧化衍生光谱法测定两种受体阻滞剂阿替洛尔和丙帕洛尔

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Edebi N Vaikosen, Jeniffer Bioghele, Ruth C. Worlu, B. Ebeshi
{"title":"碱性高锰酸钾氧化衍生光谱法测定两种受体阻滞剂阿替洛尔和丙帕洛尔","authors":"Edebi N Vaikosen, Jeniffer Bioghele, Ruth C. Worlu, B. Ebeshi","doi":"10.1515/revac-2020-0103","DOIUrl":null,"url":null,"abstract":"Abstract A simple, rapid, sensitive, cheap and accurate oxidative method for two beta-blockers in pharmaceutical dosage forms was developed and evaluated. The method involved the oxidimetric treatment of atenolol and propanolol with 2 x 10-3 mol L-1 KMnO4 in alkaline medium (pH ≥ 9). Scanned spectra of oxidized complex showed distinctive absorptions at 460, 520, 540 and 570 nm. Arrays of colour changes were observed - from violet to blue; blue to bluish-green and yellow. Exhibited colours were due to ligand-metal charge transfer. An indirect spectrophotometric determination of atenolol and propranolol was done after 12-15 minutes at 520 nm. The optimum assay conditions showed linearity ranged from 0 – 15.0 μg mL-1 for both beta-blockers (R= 0.9997 – 0.9999). Molar absorptivity values were 4.79 x 103 and 4.88 x 103 L mol-1 cm-1 for atenolol and propanolol respectively, with corresponding Sandell’s sensitivity values of 0.056 and 0.053 μg cm-2. Limits of detection and quantification were 0.50 and 1.65 μg mL-1 for atenolol respectively and 0.58 and 1.91 μg mL-1 for propanolol, while relative standard deviation for intra-and inter-day precision were < 2.0%. The applicability, accuracy and reliability of the method were demonstrated by the determination of atenolol and propanolol in tablet formulations. The recovery studies ranged from 93.33 - 103.00% for both beta-blockers and the amounts in brands were from 97.53 ± 2.68 to 100.84 ± 1.82%.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"109 1","pages":"56 - 64"},"PeriodicalIF":3.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Spectroscopic Determination of Two Beta-Blockers – Atenolol and Propanolol by Oxidative Derivatization Using Potassium Permanganate in Alkaline Medium\",\"authors\":\"Edebi N Vaikosen, Jeniffer Bioghele, Ruth C. Worlu, B. Ebeshi\",\"doi\":\"10.1515/revac-2020-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A simple, rapid, sensitive, cheap and accurate oxidative method for two beta-blockers in pharmaceutical dosage forms was developed and evaluated. The method involved the oxidimetric treatment of atenolol and propanolol with 2 x 10-3 mol L-1 KMnO4 in alkaline medium (pH ≥ 9). Scanned spectra of oxidized complex showed distinctive absorptions at 460, 520, 540 and 570 nm. Arrays of colour changes were observed - from violet to blue; blue to bluish-green and yellow. Exhibited colours were due to ligand-metal charge transfer. An indirect spectrophotometric determination of atenolol and propranolol was done after 12-15 minutes at 520 nm. The optimum assay conditions showed linearity ranged from 0 – 15.0 μg mL-1 for both beta-blockers (R= 0.9997 – 0.9999). Molar absorptivity values were 4.79 x 103 and 4.88 x 103 L mol-1 cm-1 for atenolol and propanolol respectively, with corresponding Sandell’s sensitivity values of 0.056 and 0.053 μg cm-2. Limits of detection and quantification were 0.50 and 1.65 μg mL-1 for atenolol respectively and 0.58 and 1.91 μg mL-1 for propanolol, while relative standard deviation for intra-and inter-day precision were < 2.0%. The applicability, accuracy and reliability of the method were demonstrated by the determination of atenolol and propanolol in tablet formulations. The recovery studies ranged from 93.33 - 103.00% for both beta-blockers and the amounts in brands were from 97.53 ± 2.68 to 100.84 ± 1.82%.\",\"PeriodicalId\":21090,\"journal\":{\"name\":\"Reviews in Analytical Chemistry\",\"volume\":\"109 1\",\"pages\":\"56 - 64\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/revac-2020-0103\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2020-0103","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 9

摘要

摘要:建立了一种简单、快速、灵敏、廉价、准确的两种β受体阻滞剂的氧化检测方法。用2 × 10-3 mol L-1 KMnO4在碱性介质(pH≥9)中氧化处理阿替洛尔和丙帕洛尔,扫描光谱显示氧化配合物在460、520、540和570 nm处有不同的吸收。观察到一系列的颜色变化——从紫色到蓝色;蓝色到蓝绿色和黄色。所显示的颜色是由于配金属电荷转移。采用间接分光光度法测定阿替洛尔和普萘洛尔的含量,时间为12-15分钟,波长为520 nm。两种受体阻滞剂的最佳检测条件在0 ~ 15.0 μ mL-1范围内呈线性关系(R= 0.9997 ~ 0.9999)。阿替洛尔和丙泊洛尔的摩尔吸光度分别为4.79 × 103和4.88 × 103 L mol-1 cm-1,相应的Sandell灵敏度分别为0.056和0.053 μg cm-2。阿替洛尔的检测限和定量限分别为0.50和1.65 μg mL-1,丙泊洛尔的检测限和定量限分别为0.58和1.91 μg mL-1,日内、日间精密度的相对标准偏差< 2.0%。通过片剂中阿替洛尔和丙泊洛尔的含量测定,验证了该方法的适用性、准确性和可靠性。两种受体阻滞剂的回收率为93.33 ~ 103.00%,品牌中含量为97.53±2.68 ~ 100.84±1.82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectroscopic Determination of Two Beta-Blockers – Atenolol and Propanolol by Oxidative Derivatization Using Potassium Permanganate in Alkaline Medium
Abstract A simple, rapid, sensitive, cheap and accurate oxidative method for two beta-blockers in pharmaceutical dosage forms was developed and evaluated. The method involved the oxidimetric treatment of atenolol and propanolol with 2 x 10-3 mol L-1 KMnO4 in alkaline medium (pH ≥ 9). Scanned spectra of oxidized complex showed distinctive absorptions at 460, 520, 540 and 570 nm. Arrays of colour changes were observed - from violet to blue; blue to bluish-green and yellow. Exhibited colours were due to ligand-metal charge transfer. An indirect spectrophotometric determination of atenolol and propranolol was done after 12-15 minutes at 520 nm. The optimum assay conditions showed linearity ranged from 0 – 15.0 μg mL-1 for both beta-blockers (R= 0.9997 – 0.9999). Molar absorptivity values were 4.79 x 103 and 4.88 x 103 L mol-1 cm-1 for atenolol and propanolol respectively, with corresponding Sandell’s sensitivity values of 0.056 and 0.053 μg cm-2. Limits of detection and quantification were 0.50 and 1.65 μg mL-1 for atenolol respectively and 0.58 and 1.91 μg mL-1 for propanolol, while relative standard deviation for intra-and inter-day precision were < 2.0%. The applicability, accuracy and reliability of the method were demonstrated by the determination of atenolol and propanolol in tablet formulations. The recovery studies ranged from 93.33 - 103.00% for both beta-blockers and the amounts in brands were from 97.53 ± 2.68 to 100.84 ± 1.82%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Analytical Chemistry
Reviews in Analytical Chemistry 化学-分析化学
CiteScore
7.50
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信