一种基于磁源激励的地-空频域电磁接收系统标定方法

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"一种基于磁源激励的地-空频域电磁接收系统标定方法","authors":"","doi":"10.3233/jae-220197","DOIUrl":null,"url":null,"abstract":"In the electromagnetic detection in the ground-air frequency domain, the receving system converts the magnetic field signal into an electrical signal representing the magnetic field signal. In order to accurately obtain the relationship between the magnetic field signal and the electrical signal, it is necessary to avoid the influence of environment and other factors on the system accuracy through on-site calibration. This requires high calibration accuracy, simple operation, portable equipment and strong adaptability to the environment. However, the existing calibration methods put forward higher requirements for instruments and environment. For example, the calibration of uniform magnetic field generated by Helmholtz coil needs to shield external magnetic field interference. In this paper, an overall calibration method of measurement system based on magnetic source excitation is proposed to meet the requirements of electromagnetic field accurate measurement in ground-air frequency domain. Firstly, based on the electromagnetic measurement method in ground-air frequency domain, the overall calibration method and principle of the detection system are introduced. Then, based on the computable standard magnetic field generated by the magnetic source transmitting coil, determine the measured voltage obtained by the receiving system, get the calibration coefficient of the receiving system. At last,the source of standard uncertainty related to calibration is analyzed, and the uncertainty is evaluated. In addition, the method is verified by comparing the calibration results with those obtained by Braunbeck coil calibration.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"28 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A calibration method of ground-air frequency domain electromagnetic receving system based on magnetic source excitation\",\"authors\":\"\",\"doi\":\"10.3233/jae-220197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the electromagnetic detection in the ground-air frequency domain, the receving system converts the magnetic field signal into an electrical signal representing the magnetic field signal. In order to accurately obtain the relationship between the magnetic field signal and the electrical signal, it is necessary to avoid the influence of environment and other factors on the system accuracy through on-site calibration. This requires high calibration accuracy, simple operation, portable equipment and strong adaptability to the environment. However, the existing calibration methods put forward higher requirements for instruments and environment. For example, the calibration of uniform magnetic field generated by Helmholtz coil needs to shield external magnetic field interference. In this paper, an overall calibration method of measurement system based on magnetic source excitation is proposed to meet the requirements of electromagnetic field accurate measurement in ground-air frequency domain. Firstly, based on the electromagnetic measurement method in ground-air frequency domain, the overall calibration method and principle of the detection system are introduced. Then, based on the computable standard magnetic field generated by the magnetic source transmitting coil, determine the measured voltage obtained by the receiving system, get the calibration coefficient of the receiving system. At last,the source of standard uncertainty related to calibration is analyzed, and the uncertainty is evaluated. In addition, the method is verified by comparing the calibration results with those obtained by Braunbeck coil calibration.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-220197\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220197","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

在地空频域电磁探测中,接收系统将磁场信号转换为表示磁场信号的电信号。为了准确地获得磁场信号与电信号之间的关系,需要通过现场标定避免环境等因素对系统精度的影响。这就要求校准精度高,操作简单,设备便携,对环境的适应性强。然而,现有的校准方法对仪器和环境提出了更高的要求。例如,亥姆霍兹线圈产生的均匀磁场的校准需要屏蔽外部磁场干扰。为了满足地-空频域电磁场精确测量的要求,本文提出了一种基于磁源激励的测量系统整体标定方法。首先,基于地-空频域电磁测量方法,介绍了探测系统的总体标定方法和工作原理。然后,根据磁源发射线圈产生的可计算的标准磁场,确定接收系统得到的测量电压,得到接收系统的标定系数。最后,分析了与标定相关的标准不确定度来源,并对不确定度进行了评定。并将标定结果与布朗贝克线圈标定结果进行了比较,验证了该方法的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A calibration method of ground-air frequency domain electromagnetic receving system based on magnetic source excitation
In the electromagnetic detection in the ground-air frequency domain, the receving system converts the magnetic field signal into an electrical signal representing the magnetic field signal. In order to accurately obtain the relationship between the magnetic field signal and the electrical signal, it is necessary to avoid the influence of environment and other factors on the system accuracy through on-site calibration. This requires high calibration accuracy, simple operation, portable equipment and strong adaptability to the environment. However, the existing calibration methods put forward higher requirements for instruments and environment. For example, the calibration of uniform magnetic field generated by Helmholtz coil needs to shield external magnetic field interference. In this paper, an overall calibration method of measurement system based on magnetic source excitation is proposed to meet the requirements of electromagnetic field accurate measurement in ground-air frequency domain. Firstly, based on the electromagnetic measurement method in ground-air frequency domain, the overall calibration method and principle of the detection system are introduced. Then, based on the computable standard magnetic field generated by the magnetic source transmitting coil, determine the measured voltage obtained by the receiving system, get the calibration coefficient of the receiving system. At last,the source of standard uncertainty related to calibration is analyzed, and the uncertainty is evaluated. In addition, the method is verified by comparing the calibration results with those obtained by Braunbeck coil calibration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信