近红外光谱法预测茶叶中多酚含量

Somdeb Chanda, Ashmita De, B. Tudu, R. Bandyopadhyay, A. K. Hazarika, S. Sabhapondit, B. D. Baruah, P. Tamuly, Nabarun Bhattachryya
{"title":"近红外光谱法预测茶叶中多酚含量","authors":"Somdeb Chanda, Ashmita De, B. Tudu, R. Bandyopadhyay, A. K. Hazarika, S. Sabhapondit, B. D. Baruah, P. Tamuly, Nabarun Bhattachryya","doi":"10.1109/ICICPI.2016.7859672","DOIUrl":null,"url":null,"abstract":"Total polyphenol contents in tea leaves estimation have been presented by the near infrared reflectance (NIR) spectroscopy. In order to calibrate the regression model on NIR tea spectra partial least squares (PLS) algorithm was used. The number of PLS factors and the choice of preprocessing methods were optimized simultaneously by leave-one-sample out cross-validation during the model calibration. The efficacy of the model developed was evaluated by the root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV) and correlation coefficient (R). The correlation coefficients (R) in the prediction set is 0.95. Results showed that NIR spectroscopy with PLS algorithm can be used to analyze the content of polyphenol in tea leaves.","PeriodicalId":6501,"journal":{"name":"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)","volume":"5 1","pages":"51-55"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of polyphenol content in tea leaves using NIR spectroscopy\",\"authors\":\"Somdeb Chanda, Ashmita De, B. Tudu, R. Bandyopadhyay, A. K. Hazarika, S. Sabhapondit, B. D. Baruah, P. Tamuly, Nabarun Bhattachryya\",\"doi\":\"10.1109/ICICPI.2016.7859672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Total polyphenol contents in tea leaves estimation have been presented by the near infrared reflectance (NIR) spectroscopy. In order to calibrate the regression model on NIR tea spectra partial least squares (PLS) algorithm was used. The number of PLS factors and the choice of preprocessing methods were optimized simultaneously by leave-one-sample out cross-validation during the model calibration. The efficacy of the model developed was evaluated by the root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV) and correlation coefficient (R). The correlation coefficients (R) in the prediction set is 0.95. Results showed that NIR spectroscopy with PLS algorithm can be used to analyze the content of polyphenol in tea leaves.\",\"PeriodicalId\":6501,\"journal\":{\"name\":\"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)\",\"volume\":\"5 1\",\"pages\":\"51-55\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICPI.2016.7859672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICPI.2016.7859672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用近红外光谱法测定了茶叶中总多酚的含量。为了校正近红外茶叶光谱的回归模型,采用偏最小二乘(PLS)算法。在模型标定过程中,通过留一样本交叉验证,同时优化PLS因子的数量和预处理方法的选择。采用预测均方根误差(RMSEP)、交叉验证均方根误差(RMSECV)和相关系数(R)评价模型的有效性,预测集相关系数(R)为0.95。结果表明,PLS算法可用于近红外光谱分析茶叶中多酚的含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of polyphenol content in tea leaves using NIR spectroscopy
Total polyphenol contents in tea leaves estimation have been presented by the near infrared reflectance (NIR) spectroscopy. In order to calibrate the regression model on NIR tea spectra partial least squares (PLS) algorithm was used. The number of PLS factors and the choice of preprocessing methods were optimized simultaneously by leave-one-sample out cross-validation during the model calibration. The efficacy of the model developed was evaluated by the root mean square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV) and correlation coefficient (R). The correlation coefficients (R) in the prediction set is 0.95. Results showed that NIR spectroscopy with PLS algorithm can be used to analyze the content of polyphenol in tea leaves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信