M. Kubo, Y. Katsukawa, D. Hernández Expósito, A. Sánchez Gómez, M. Balaguer Jimenéz, D. Orozco Suárez, José M. Morales Fernández, B. Aparicio del Moral, Antonio J. Moreno Mantas, Eduardo Bailón Martínez, J. C. del Toro Iniesta, Y. Kawabata, C. Quintero Noda, T. Oba, R. Ishikawa, T. Shimizu
{"title":"用于sunrise III气球望远镜的日出色球红外分光偏振计的高速数据处理","authors":"M. Kubo, Y. Katsukawa, D. Hernández Expósito, A. Sánchez Gómez, M. Balaguer Jimenéz, D. Orozco Suárez, José M. Morales Fernández, B. Aparicio del Moral, Antonio J. Moreno Mantas, Eduardo Bailón Martínez, J. C. del Toro Iniesta, Y. Kawabata, C. Quintero Noda, T. Oba, R. Ishikawa, T. Shimizu","doi":"10.1117/1.JATIS.9.3.034003","DOIUrl":null,"url":null,"abstract":"Abstract. The Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) has been developed for the third flight of the Sunrise balloon-borne stratospheric solar observatory. The aim of the SCIP is to reveal the evolution of three-dimensional magnetic fields in the solar photosphere and chromosphere using spectropolarimetric measurements with a polarimetric precision of 0.03% (1σ). Multiple lines in the 770 and 850 nm wavelength bands are simultaneously observed with two 2 k × 2 k CMOS cameras at a frame rate of 31.25 Hz. Stokes profiles are calculated onboard by accumulating the images modulated by a polarization modulation unit, and then compression processes are applied to the two-dimensional maps of the Stokes profiles. This onboard data processing effectively reduces the data rate. SCIP electronics can handle large data formats at high speed. Before the implementation into the flight SCIP electronics, a performance verification of the onboard data processing was performed with synthetic SCIP data that were produced with a numerical simulation modeling the solar atmospheres. Finally, we verified that the high-speed onboard data processing was realized on ground with the flight hardware using images illuminated by natural sunlight or an LED light.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-speed data processing onboard sunrise chromospheric infrared spectropolarimeter for the SUNRISE III balloon telescope\",\"authors\":\"M. Kubo, Y. Katsukawa, D. Hernández Expósito, A. Sánchez Gómez, M. Balaguer Jimenéz, D. Orozco Suárez, José M. Morales Fernández, B. Aparicio del Moral, Antonio J. Moreno Mantas, Eduardo Bailón Martínez, J. C. del Toro Iniesta, Y. Kawabata, C. Quintero Noda, T. Oba, R. Ishikawa, T. Shimizu\",\"doi\":\"10.1117/1.JATIS.9.3.034003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) has been developed for the third flight of the Sunrise balloon-borne stratospheric solar observatory. The aim of the SCIP is to reveal the evolution of three-dimensional magnetic fields in the solar photosphere and chromosphere using spectropolarimetric measurements with a polarimetric precision of 0.03% (1σ). Multiple lines in the 770 and 850 nm wavelength bands are simultaneously observed with two 2 k × 2 k CMOS cameras at a frame rate of 31.25 Hz. Stokes profiles are calculated onboard by accumulating the images modulated by a polarization modulation unit, and then compression processes are applied to the two-dimensional maps of the Stokes profiles. This onboard data processing effectively reduces the data rate. SCIP electronics can handle large data formats at high speed. Before the implementation into the flight SCIP electronics, a performance verification of the onboard data processing was performed with synthetic SCIP data that were produced with a numerical simulation modeling the solar atmospheres. Finally, we verified that the high-speed onboard data processing was realized on ground with the flight hardware using images illuminated by natural sunlight or an LED light.\",\"PeriodicalId\":54342,\"journal\":{\"name\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JATIS.9.3.034003\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JATIS.9.3.034003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
High-speed data processing onboard sunrise chromospheric infrared spectropolarimeter for the SUNRISE III balloon telescope
Abstract. The Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) has been developed for the third flight of the Sunrise balloon-borne stratospheric solar observatory. The aim of the SCIP is to reveal the evolution of three-dimensional magnetic fields in the solar photosphere and chromosphere using spectropolarimetric measurements with a polarimetric precision of 0.03% (1σ). Multiple lines in the 770 and 850 nm wavelength bands are simultaneously observed with two 2 k × 2 k CMOS cameras at a frame rate of 31.25 Hz. Stokes profiles are calculated onboard by accumulating the images modulated by a polarization modulation unit, and then compression processes are applied to the two-dimensional maps of the Stokes profiles. This onboard data processing effectively reduces the data rate. SCIP electronics can handle large data formats at high speed. Before the implementation into the flight SCIP electronics, a performance verification of the onboard data processing was performed with synthetic SCIP data that were produced with a numerical simulation modeling the solar atmospheres. Finally, we verified that the high-speed onboard data processing was realized on ground with the flight hardware using images illuminated by natural sunlight or an LED light.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.