N. Wang, S. Yoshida, M. Kumano, Y. Kawai, S. Tanaka, M. Esashi
{"title":"基于溶胶-凝胶高纵横比PZT结构的横向驱动压电双晶片MEMS驱动器","authors":"N. Wang, S. Yoshida, M. Kumano, Y. Kawai, S. Tanaka, M. Esashi","doi":"10.1109/MEMSYS.2013.6474211","DOIUrl":null,"url":null,"abstract":"This paper reports on the fabrication and characterization of a novel laterally-driven piezoelectric bimorph MEMS actuator with high aspect-ratio (AR) lead-zirconate-titanate (PZT) structure. In the fabrication process, the PZT structures (AR=8) was successfully fabricated by filling deep Si trenches with nanocomposite sol-gel PZT. A lateral displacement of 10 μm was obtained from a 500-μm-long actuator by bimorph actuation at driving voltages of +25 V/-5 V, while no vertical cross-motion as well as no initial vertical bending was observed. Compared with conventional capacitive comb-drive actuators, this actuator occupies a much smaller area to generate identical force or displacement. This actuator has the potential to become a new actuation technology in MEMS.","PeriodicalId":92162,"journal":{"name":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","volume":"7 1","pages":"197-200"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Laterally-driven piezoelectric bimorph MEMS actuator with sol-gel-based high-aspect-ratio PZT sturucture\",\"authors\":\"N. Wang, S. Yoshida, M. Kumano, Y. Kawai, S. Tanaka, M. Esashi\",\"doi\":\"10.1109/MEMSYS.2013.6474211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the fabrication and characterization of a novel laterally-driven piezoelectric bimorph MEMS actuator with high aspect-ratio (AR) lead-zirconate-titanate (PZT) structure. In the fabrication process, the PZT structures (AR=8) was successfully fabricated by filling deep Si trenches with nanocomposite sol-gel PZT. A lateral displacement of 10 μm was obtained from a 500-μm-long actuator by bimorph actuation at driving voltages of +25 V/-5 V, while no vertical cross-motion as well as no initial vertical bending was observed. Compared with conventional capacitive comb-drive actuators, this actuator occupies a much smaller area to generate identical force or displacement. This actuator has the potential to become a new actuation technology in MEMS.\",\"PeriodicalId\":92162,\"journal\":{\"name\":\"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)\",\"volume\":\"7 1\",\"pages\":\"197-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2013.6474211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS 2013) : Taipei, Taiwan, 20-24 January 2013. IEEE International Conference on Micro Electro Mechanical Systems (26th : 2013 : Taipei, Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2013.6474211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laterally-driven piezoelectric bimorph MEMS actuator with sol-gel-based high-aspect-ratio PZT sturucture
This paper reports on the fabrication and characterization of a novel laterally-driven piezoelectric bimorph MEMS actuator with high aspect-ratio (AR) lead-zirconate-titanate (PZT) structure. In the fabrication process, the PZT structures (AR=8) was successfully fabricated by filling deep Si trenches with nanocomposite sol-gel PZT. A lateral displacement of 10 μm was obtained from a 500-μm-long actuator by bimorph actuation at driving voltages of +25 V/-5 V, while no vertical cross-motion as well as no initial vertical bending was observed. Compared with conventional capacitive comb-drive actuators, this actuator occupies a much smaller area to generate identical force or displacement. This actuator has the potential to become a new actuation technology in MEMS.