{"title":"剪切波分裂揭示的缅甸和泰国地下各向异性双层模型","authors":"Kasemsak Saetang","doi":"10.4401/ag-8769","DOIUrl":null,"url":null,"abstract":"The first model of two layers is presented to study the anisotropy pattern beneath Myanmar and Thailand using shear-wave splitting. Teleseismic activity recorded by 15 permanent broadband stations was analysed to investigate the anisotropy and to understand the flow direction in the mantle. The flow direction and speed were observed in the forms of fast polarisation direction (𝜙) and delay time (𝛿𝑡) between fast and slow components. The measurements showed that a two-layer model beneath stations better explicates the splitting observations than a single-layer model. The upper and lower layers were interpreted as lithosphere and asthenosphere in similar patterns and compared with GPS (Global Positioning System) velocity fields and strain rate fields. Two groups of 𝜙 can be classified and matched with West-Burma Terrane (WBT) and Shan-Thai Terrane (STT). The 𝜙 represents that West-Burma Terrane moves in a northward direction, Shan-Thai Terrane and Indo-China Terrane (ICT) move in a south-eastern direction, and West-Burma Terrane has less anisotropy of 𝜙 than Shan-Thai Terrane.","PeriodicalId":50766,"journal":{"name":"Annals of Geophysics","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-layer model of anisotropy beneath Myanmar and Thailand revealed by shear-wave splitting\",\"authors\":\"Kasemsak Saetang\",\"doi\":\"10.4401/ag-8769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first model of two layers is presented to study the anisotropy pattern beneath Myanmar and Thailand using shear-wave splitting. Teleseismic activity recorded by 15 permanent broadband stations was analysed to investigate the anisotropy and to understand the flow direction in the mantle. The flow direction and speed were observed in the forms of fast polarisation direction (𝜙) and delay time (𝛿𝑡) between fast and slow components. The measurements showed that a two-layer model beneath stations better explicates the splitting observations than a single-layer model. The upper and lower layers were interpreted as lithosphere and asthenosphere in similar patterns and compared with GPS (Global Positioning System) velocity fields and strain rate fields. Two groups of 𝜙 can be classified and matched with West-Burma Terrane (WBT) and Shan-Thai Terrane (STT). The 𝜙 represents that West-Burma Terrane moves in a northward direction, Shan-Thai Terrane and Indo-China Terrane (ICT) move in a south-eastern direction, and West-Burma Terrane has less anisotropy of 𝜙 than Shan-Thai Terrane.\",\"PeriodicalId\":50766,\"journal\":{\"name\":\"Annals of Geophysics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.4401/ag-8769\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4401/ag-8769","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Two-layer model of anisotropy beneath Myanmar and Thailand revealed by shear-wave splitting
The first model of two layers is presented to study the anisotropy pattern beneath Myanmar and Thailand using shear-wave splitting. Teleseismic activity recorded by 15 permanent broadband stations was analysed to investigate the anisotropy and to understand the flow direction in the mantle. The flow direction and speed were observed in the forms of fast polarisation direction (𝜙) and delay time (𝛿𝑡) between fast and slow components. The measurements showed that a two-layer model beneath stations better explicates the splitting observations than a single-layer model. The upper and lower layers were interpreted as lithosphere and asthenosphere in similar patterns and compared with GPS (Global Positioning System) velocity fields and strain rate fields. Two groups of 𝜙 can be classified and matched with West-Burma Terrane (WBT) and Shan-Thai Terrane (STT). The 𝜙 represents that West-Burma Terrane moves in a northward direction, Shan-Thai Terrane and Indo-China Terrane (ICT) move in a south-eastern direction, and West-Burma Terrane has less anisotropy of 𝜙 than Shan-Thai Terrane.
期刊介绍:
Annals of Geophysics is an international, peer-reviewed, open-access, online journal. Annals of Geophysics welcomes contributions on primary research on Seismology, Geodesy, Volcanology, Physics and Chemistry of the Earth, Oceanography and Climatology, Geomagnetism and Paleomagnetism, Geodynamics and Tectonophysics, Physics and Chemistry of the Atmosphere.
It provides:
-Open-access, freely accessible online (authors retain copyright)
-Fast publication times
-Peer review by expert, practicing researchers
-Free of charge publication
-Post-publication tools to indicate quality and impact
-Worldwide media coverage.
Annals of Geophysics is published by Istituto Nazionale di Geofisica e Vulcanologia (INGV), nonprofit public research institution.