Yujie Shan, Aravind Krishnakumar, Zehan Qin, Huachao Mao
{"title":"智能树脂大桶:实时检测故障,缺陷,和固化区域在大桶光聚合3D打印","authors":"Yujie Shan, Aravind Krishnakumar, Zehan Qin, Huachao Mao","doi":"10.1115/msec2022-85691","DOIUrl":null,"url":null,"abstract":"\n Real-time and in-situ printing performance diagnostic in vat photopolymerization is critical to control printing quality, improve process reliability, and reduce wasted time and materials. This paper proposed a low-cost smart resin vat to monitor the printing process and detect the printing faults. Built on a conventional vat photopolymerization process, we added equally spaced thermistors along the edges of the resin vat. During printing, polymerization heat transferred to the edges of the resin vat, which increased thermistors’ temperature and enhanced resistances. The heat flux received at each thermistor varied with the distance to the place of photopolymerization. The temperature profiles of all thermistors were determined by the curing image pattern in each layer, and vice versa. Machine learning algorithms were leveraged to infer the printing status from the measured temperatures of these thermistors. Specifically, we proposed a simple and robust Failure Index to detect if the printing was active or terminated. Gaussian process regression was utilized to predict the printing area using the temperature recordings within a layer. The model was trained, validated, and tested using the data set collected by printing six parts. Different printing abnormalities, including printing failures, manual printing pause, and missing features (incorrect printing area), were successfully detected. The proposed approach modified the resin vat only and could be easily applied to all vat photopolymerization processes, including SLA, DLP, and LCD based 3D printing. The limitation and future work are also highlighted.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Resin Vat: Real-Time Detecting Failures, Defects, and Curing Area in Vat Photopolymerization 3D Printing\",\"authors\":\"Yujie Shan, Aravind Krishnakumar, Zehan Qin, Huachao Mao\",\"doi\":\"10.1115/msec2022-85691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Real-time and in-situ printing performance diagnostic in vat photopolymerization is critical to control printing quality, improve process reliability, and reduce wasted time and materials. This paper proposed a low-cost smart resin vat to monitor the printing process and detect the printing faults. Built on a conventional vat photopolymerization process, we added equally spaced thermistors along the edges of the resin vat. During printing, polymerization heat transferred to the edges of the resin vat, which increased thermistors’ temperature and enhanced resistances. The heat flux received at each thermistor varied with the distance to the place of photopolymerization. The temperature profiles of all thermistors were determined by the curing image pattern in each layer, and vice versa. Machine learning algorithms were leveraged to infer the printing status from the measured temperatures of these thermistors. Specifically, we proposed a simple and robust Failure Index to detect if the printing was active or terminated. Gaussian process regression was utilized to predict the printing area using the temperature recordings within a layer. The model was trained, validated, and tested using the data set collected by printing six parts. Different printing abnormalities, including printing failures, manual printing pause, and missing features (incorrect printing area), were successfully detected. The proposed approach modified the resin vat only and could be easily applied to all vat photopolymerization processes, including SLA, DLP, and LCD based 3D printing. The limitation and future work are also highlighted.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Smart Resin Vat: Real-Time Detecting Failures, Defects, and Curing Area in Vat Photopolymerization 3D Printing
Real-time and in-situ printing performance diagnostic in vat photopolymerization is critical to control printing quality, improve process reliability, and reduce wasted time and materials. This paper proposed a low-cost smart resin vat to monitor the printing process and detect the printing faults. Built on a conventional vat photopolymerization process, we added equally spaced thermistors along the edges of the resin vat. During printing, polymerization heat transferred to the edges of the resin vat, which increased thermistors’ temperature and enhanced resistances. The heat flux received at each thermistor varied with the distance to the place of photopolymerization. The temperature profiles of all thermistors were determined by the curing image pattern in each layer, and vice versa. Machine learning algorithms were leveraged to infer the printing status from the measured temperatures of these thermistors. Specifically, we proposed a simple and robust Failure Index to detect if the printing was active or terminated. Gaussian process regression was utilized to predict the printing area using the temperature recordings within a layer. The model was trained, validated, and tested using the data set collected by printing six parts. Different printing abnormalities, including printing failures, manual printing pause, and missing features (incorrect printing area), were successfully detected. The proposed approach modified the resin vat only and could be easily applied to all vat photopolymerization processes, including SLA, DLP, and LCD based 3D printing. The limitation and future work are also highlighted.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.