Xiaolin Jiang, Michele Luvisotto, Zhibo Pang, C. Fischione
{"title":"关键工业控制系统5G新无线电延迟性能研究","authors":"Xiaolin Jiang, Michele Luvisotto, Zhibo Pang, C. Fischione","doi":"10.1109/ETFA.2019.8869241","DOIUrl":null,"url":null,"abstract":"An innovative feature of the 5th Generation mobile network (5G) is to consider industrial applications as use cases for which its new radio access, 5G New Radio, aims to provide ultra low latency and ultra high reliability performance. These requirements are fulfilled by minimizing standard performance indicators such as end-to-end latency and packet error rate. However, industrial control applications typically require periodic exchange of small data, where the ability of networks to support short and deterministic cycle times is the main key performance indicator. This paper proposes a methodology to evaluate the achievable cycle time of an industrial network deployed over the 5G New Radio specifications. Numerical results shows that 5G can achieve millisecond level cycle time with network size of several hundred, which is promising for many factory automation applications.","PeriodicalId":6682,"journal":{"name":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"69 1","pages":"1135-1142"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Latency Performance of 5G New Radio for Critical Industrial Control Systems\",\"authors\":\"Xiaolin Jiang, Michele Luvisotto, Zhibo Pang, C. Fischione\",\"doi\":\"10.1109/ETFA.2019.8869241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An innovative feature of the 5th Generation mobile network (5G) is to consider industrial applications as use cases for which its new radio access, 5G New Radio, aims to provide ultra low latency and ultra high reliability performance. These requirements are fulfilled by minimizing standard performance indicators such as end-to-end latency and packet error rate. However, industrial control applications typically require periodic exchange of small data, where the ability of networks to support short and deterministic cycle times is the main key performance indicator. This paper proposes a methodology to evaluate the achievable cycle time of an industrial network deployed over the 5G New Radio specifications. Numerical results shows that 5G can achieve millisecond level cycle time with network size of several hundred, which is promising for many factory automation applications.\",\"PeriodicalId\":6682,\"journal\":{\"name\":\"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"69 1\",\"pages\":\"1135-1142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2019.8869241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2019.8869241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Latency Performance of 5G New Radio for Critical Industrial Control Systems
An innovative feature of the 5th Generation mobile network (5G) is to consider industrial applications as use cases for which its new radio access, 5G New Radio, aims to provide ultra low latency and ultra high reliability performance. These requirements are fulfilled by minimizing standard performance indicators such as end-to-end latency and packet error rate. However, industrial control applications typically require periodic exchange of small data, where the ability of networks to support short and deterministic cycle times is the main key performance indicator. This paper proposes a methodology to evaluate the achievable cycle time of an industrial network deployed over the 5G New Radio specifications. Numerical results shows that 5G can achieve millisecond level cycle time with network size of several hundred, which is promising for many factory automation applications.