马纳多Malalayang海滩两层珊瑚礁生态系统测绘的随机森林算法

Fela Pritian Cera, P. Danoedoro, P. Wicaksono, M. Yasir
{"title":"马纳多Malalayang海滩两层珊瑚礁生态系统测绘的随机森林算法","authors":"Fela Pritian Cera, P. Danoedoro, P. Wicaksono, M. Yasir","doi":"10.24114/jg.v15i2.30795","DOIUrl":null,"url":null,"abstract":"The coral reef ecosystem has a significant physical and biological function and is also one of the coastal ecosystem components apart from the seagrass and mangrove ecosystem. Besides their ecological function, the coral reef also has an economic function. The condition of the coral reef ecosystem in Malalayang Beach has been changing for years. The utilization of remote sensing images can monitor current conditions. This research aims to map the coral reef ecosystem mapping in Malalayang Beach, Manado and conduct a test for the accuracy of coral reef ecosystem mapping using field survey data as a classification and validation sample. PlanetScope multispectral image has four channels to detect underwater objects: red, green, blue and near infrared. PlanetScope level 3B image for the research has a surface reflectance value for its pixel. The image processing stages of this research consist of sunglint correction, water column correction, and then continue to classify the coral reef ecosystem using random forests algorithm. Classification and accuracy training sample data were obtained using the photo transect technique. The sunglint correction regression equation is between 0.27 – 0.38. The coefficient of attenuation ratio in B1 is 0.927797938, B2 is 0.168841585, and B3 is 0.29033029. This value then becomes the input for the Lyzenga formula. The classification accuracy for level one using random forests is 72,54%, and the accuracy for level two mapping is 37,61%.Keywords: Coral Reef Ecosystem, Planetscope, Random Forests","PeriodicalId":31787,"journal":{"name":"Jurnal Geografi","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Forests Algorithm for Two Levels of Coral Reef Ecosystem Mapping Using Planetscope Image in Malalayang Beach, Manado\",\"authors\":\"Fela Pritian Cera, P. Danoedoro, P. Wicaksono, M. Yasir\",\"doi\":\"10.24114/jg.v15i2.30795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coral reef ecosystem has a significant physical and biological function and is also one of the coastal ecosystem components apart from the seagrass and mangrove ecosystem. Besides their ecological function, the coral reef also has an economic function. The condition of the coral reef ecosystem in Malalayang Beach has been changing for years. The utilization of remote sensing images can monitor current conditions. This research aims to map the coral reef ecosystem mapping in Malalayang Beach, Manado and conduct a test for the accuracy of coral reef ecosystem mapping using field survey data as a classification and validation sample. PlanetScope multispectral image has four channels to detect underwater objects: red, green, blue and near infrared. PlanetScope level 3B image for the research has a surface reflectance value for its pixel. The image processing stages of this research consist of sunglint correction, water column correction, and then continue to classify the coral reef ecosystem using random forests algorithm. Classification and accuracy training sample data were obtained using the photo transect technique. The sunglint correction regression equation is between 0.27 – 0.38. The coefficient of attenuation ratio in B1 is 0.927797938, B2 is 0.168841585, and B3 is 0.29033029. This value then becomes the input for the Lyzenga formula. The classification accuracy for level one using random forests is 72,54%, and the accuracy for level two mapping is 37,61%.Keywords: Coral Reef Ecosystem, Planetscope, Random Forests\",\"PeriodicalId\":31787,\"journal\":{\"name\":\"Jurnal Geografi\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Geografi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/jg.v15i2.30795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Geografi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/jg.v15i2.30795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

珊瑚礁生态系统具有重要的物理和生物功能,是除海草和红树林生态系统外的沿海生态系统组成部分之一。除了生态功能外,珊瑚礁还具有经济功能。马拉拉扬海滩珊瑚礁生态系统的状况多年来一直在变化。利用遥感图像可以监测当前状况。本研究旨在绘制万鸦岛Malalayang海滩珊瑚礁生态系统制图,并利用野外调查数据作为分类验证样本,对珊瑚礁生态系统制图的准确性进行检验。PlanetScope多光谱图像有四个通道来探测水下物体:红、绿、蓝和近红外。本研究的PlanetScope level 3B图像其像素具有一个表面反射率值。本研究的图像处理阶段包括太阳晖校正、水柱校正,然后使用随机森林算法继续对珊瑚礁生态系统进行分类。利用光样条技术获得分类和准确率训练样本数据。日辉校正回归方程在0.27 ~ 0.38之间。B1的衰减比系数为0.927797938,B2的衰减比系数为0.168841585,B3的衰减比系数为0.29033029。这个值然后成为Lyzenga公式的输入。第一级使用随机森林的分类精度为72.54%,第二级使用随机森林的分类精度为37.61%。关键词:珊瑚礁生态系统,行星望远镜,随机森林
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Forests Algorithm for Two Levels of Coral Reef Ecosystem Mapping Using Planetscope Image in Malalayang Beach, Manado
The coral reef ecosystem has a significant physical and biological function and is also one of the coastal ecosystem components apart from the seagrass and mangrove ecosystem. Besides their ecological function, the coral reef also has an economic function. The condition of the coral reef ecosystem in Malalayang Beach has been changing for years. The utilization of remote sensing images can monitor current conditions. This research aims to map the coral reef ecosystem mapping in Malalayang Beach, Manado and conduct a test for the accuracy of coral reef ecosystem mapping using field survey data as a classification and validation sample. PlanetScope multispectral image has four channels to detect underwater objects: red, green, blue and near infrared. PlanetScope level 3B image for the research has a surface reflectance value for its pixel. The image processing stages of this research consist of sunglint correction, water column correction, and then continue to classify the coral reef ecosystem using random forests algorithm. Classification and accuracy training sample data were obtained using the photo transect technique. The sunglint correction regression equation is between 0.27 – 0.38. The coefficient of attenuation ratio in B1 is 0.927797938, B2 is 0.168841585, and B3 is 0.29033029. This value then becomes the input for the Lyzenga formula. The classification accuracy for level one using random forests is 72,54%, and the accuracy for level two mapping is 37,61%.Keywords: Coral Reef Ecosystem, Planetscope, Random Forests
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信