{"title":"星坐标系统:可视化大维数据","authors":"Trần Văn Long, Bùi Việt Hương","doi":"10.34238/tnu-jst.7768","DOIUrl":null,"url":null,"abstract":"Phân tích khai phá về các cấu trúc nhóm và xu hướng của dữ liệu nhiều chiều là chủ đề chính của nhiều lĩnh vực nghiên cứu có nhiều ứng dụng, đặc biệt trong phân tích dữ liệu gen. Dữ liệu gen có số chiều lớn và số quan sát nhỏ. Các phương pháp phân tích thống kê truyền thống thông thường không được áp dụng trực tiếp cho dữ liệu có số chiều cao, số mẫu nhỏ. Trong bài báo này, chúng tôi giới thiệu cách tiếp cận phân tích dữ liệu bằng trực quan hoá đối với dữ liệu có số chiều cao và cỡ mẫu nhỏ. Chúng tôi đề xuất phương pháp chiếu thưa dựa vào phương pháp trực quan hoá bằng hệ toạ độ hình sao mà cấu trúc nhóm được bảo toàn nhờ vào việc tối ưu hoá sự phân bố hệ toạ độ hình sao. Phương pháp chiếu thưa nhận được từ việc xếp hạng chất lượng trực quan hoá theo thứ tự các thuộc tính quan trọng để lựa chọn các thuộc tính quan trọng trong phân tích cấu trúc nhóm của dữ liệu. Các kết quả thực nghiệm chứng tỏ sự hiệu quả của phương pháp đề xuất.","PeriodicalId":23148,"journal":{"name":"TNU Journal of Science and Technology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HỆ TOẠ ĐỘ HÌNH SAO THƯA: TRỰC QUAN HÓA DỮ LIỆU SỐ CHIỀU LỚN CỠ MẪU NHỎ\",\"authors\":\"Trần Văn Long, Bùi Việt Hương\",\"doi\":\"10.34238/tnu-jst.7768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phân tích khai phá về các cấu trúc nhóm và xu hướng của dữ liệu nhiều chiều là chủ đề chính của nhiều lĩnh vực nghiên cứu có nhiều ứng dụng, đặc biệt trong phân tích dữ liệu gen. Dữ liệu gen có số chiều lớn và số quan sát nhỏ. Các phương pháp phân tích thống kê truyền thống thông thường không được áp dụng trực tiếp cho dữ liệu có số chiều cao, số mẫu nhỏ. Trong bài báo này, chúng tôi giới thiệu cách tiếp cận phân tích dữ liệu bằng trực quan hoá đối với dữ liệu có số chiều cao và cỡ mẫu nhỏ. Chúng tôi đề xuất phương pháp chiếu thưa dựa vào phương pháp trực quan hoá bằng hệ toạ độ hình sao mà cấu trúc nhóm được bảo toàn nhờ vào việc tối ưu hoá sự phân bố hệ toạ độ hình sao. Phương pháp chiếu thưa nhận được từ việc xếp hạng chất lượng trực quan hoá theo thứ tự các thuộc tính quan trọng để lựa chọn các thuộc tính quan trọng trong phân tích cấu trúc nhóm của dữ liệu. Các kết quả thực nghiệm chứng tỏ sự hiệu quả của phương pháp đề xuất.\",\"PeriodicalId\":23148,\"journal\":{\"name\":\"TNU Journal of Science and Technology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TNU Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34238/tnu-jst.7768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TNU Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34238/tnu-jst.7768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HỆ TOẠ ĐỘ HÌNH SAO THƯA: TRỰC QUAN HÓA DỮ LIỆU SỐ CHIỀU LỚN CỠ MẪU NHỎ
Phân tích khai phá về các cấu trúc nhóm và xu hướng của dữ liệu nhiều chiều là chủ đề chính của nhiều lĩnh vực nghiên cứu có nhiều ứng dụng, đặc biệt trong phân tích dữ liệu gen. Dữ liệu gen có số chiều lớn và số quan sát nhỏ. Các phương pháp phân tích thống kê truyền thống thông thường không được áp dụng trực tiếp cho dữ liệu có số chiều cao, số mẫu nhỏ. Trong bài báo này, chúng tôi giới thiệu cách tiếp cận phân tích dữ liệu bằng trực quan hoá đối với dữ liệu có số chiều cao và cỡ mẫu nhỏ. Chúng tôi đề xuất phương pháp chiếu thưa dựa vào phương pháp trực quan hoá bằng hệ toạ độ hình sao mà cấu trúc nhóm được bảo toàn nhờ vào việc tối ưu hoá sự phân bố hệ toạ độ hình sao. Phương pháp chiếu thưa nhận được từ việc xếp hạng chất lượng trực quan hoá theo thứ tự các thuộc tính quan trọng để lựa chọn các thuộc tính quan trọng trong phân tích cấu trúc nhóm của dữ liệu. Các kết quả thực nghiệm chứng tỏ sự hiệu quả của phương pháp đề xuất.