Mohammad Iqbal, Chandrawati Putri Wulandari, Wawan Yunanto, Ghaluh Indah Permata Sari
{"title":"活动识别中的非零稀有序列模式挖掘","authors":"Mohammad Iqbal, Chandrawati Putri Wulandari, Wawan Yunanto, Ghaluh Indah Permata Sari","doi":"10.15642/mantik.2019.5.1.1-9","DOIUrl":null,"url":null,"abstract":"Discovering rare human activity patterns—from triggered motion sensors deliver peculiar information to notify people about hazard situations. This study aims to recognize rare human activities using mining non-zero-rare sequential patterns technique. In particular, this study mines the triggered motion sensor sequences to obtain non-zero-rare human activity patterns—the patterns which most occur in the motion sensor sequences and the occurrence numbers are less than the pre-defined occurrence threshold. This study proposes an algorithm to mine non-zero-rare pattern on human activity recognition called Mining Multi-class Non-Zero-Rare Sequential Patterns (MMRSP). The experimental result showed that non-zero-rare human activity patterns succeed to capture the unusual activity. Furthermore, the MMRSP performed well according to the precision value of rare activities.","PeriodicalId":32704,"journal":{"name":"Mantik Jurnal Matematika","volume":"163 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mining Non-Zero-Rare Sequential Patterns On Activity Recognition\",\"authors\":\"Mohammad Iqbal, Chandrawati Putri Wulandari, Wawan Yunanto, Ghaluh Indah Permata Sari\",\"doi\":\"10.15642/mantik.2019.5.1.1-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering rare human activity patterns—from triggered motion sensors deliver peculiar information to notify people about hazard situations. This study aims to recognize rare human activities using mining non-zero-rare sequential patterns technique. In particular, this study mines the triggered motion sensor sequences to obtain non-zero-rare human activity patterns—the patterns which most occur in the motion sensor sequences and the occurrence numbers are less than the pre-defined occurrence threshold. This study proposes an algorithm to mine non-zero-rare pattern on human activity recognition called Mining Multi-class Non-Zero-Rare Sequential Patterns (MMRSP). The experimental result showed that non-zero-rare human activity patterns succeed to capture the unusual activity. Furthermore, the MMRSP performed well according to the precision value of rare activities.\",\"PeriodicalId\":32704,\"journal\":{\"name\":\"Mantik Jurnal Matematika\",\"volume\":\"163 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mantik Jurnal Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15642/mantik.2019.5.1.1-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mantik Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15642/mantik.2019.5.1.1-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining Non-Zero-Rare Sequential Patterns On Activity Recognition
Discovering rare human activity patterns—from triggered motion sensors deliver peculiar information to notify people about hazard situations. This study aims to recognize rare human activities using mining non-zero-rare sequential patterns technique. In particular, this study mines the triggered motion sensor sequences to obtain non-zero-rare human activity patterns—the patterns which most occur in the motion sensor sequences and the occurrence numbers are less than the pre-defined occurrence threshold. This study proposes an algorithm to mine non-zero-rare pattern on human activity recognition called Mining Multi-class Non-Zero-Rare Sequential Patterns (MMRSP). The experimental result showed that non-zero-rare human activity patterns succeed to capture the unusual activity. Furthermore, the MMRSP performed well according to the precision value of rare activities.