活动识别中的非零稀有序列模式挖掘

Mohammad Iqbal, Chandrawati Putri Wulandari, Wawan Yunanto, Ghaluh Indah Permata Sari
{"title":"活动识别中的非零稀有序列模式挖掘","authors":"Mohammad Iqbal, Chandrawati Putri Wulandari, Wawan Yunanto, Ghaluh Indah Permata Sari","doi":"10.15642/mantik.2019.5.1.1-9","DOIUrl":null,"url":null,"abstract":"Discovering rare human activity patterns—from triggered motion sensors deliver peculiar information to notify people about hazard situations. This study aims to recognize rare human activities using mining non-zero-rare sequential patterns technique. In particular, this study mines the triggered motion sensor sequences to obtain non-zero-rare human activity patterns—the patterns which most occur in the motion sensor sequences and the occurrence numbers are less than the pre-defined occurrence threshold. This study proposes an algorithm to mine non-zero-rare pattern on human activity recognition called Mining Multi-class Non-Zero-Rare Sequential Patterns (MMRSP).  The experimental result showed that non-zero-rare human activity patterns succeed to capture the unusual activity. Furthermore, the MMRSP performed well according to the precision value of rare activities.","PeriodicalId":32704,"journal":{"name":"Mantik Jurnal Matematika","volume":"163 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mining Non-Zero-Rare Sequential Patterns On Activity Recognition\",\"authors\":\"Mohammad Iqbal, Chandrawati Putri Wulandari, Wawan Yunanto, Ghaluh Indah Permata Sari\",\"doi\":\"10.15642/mantik.2019.5.1.1-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discovering rare human activity patterns—from triggered motion sensors deliver peculiar information to notify people about hazard situations. This study aims to recognize rare human activities using mining non-zero-rare sequential patterns technique. In particular, this study mines the triggered motion sensor sequences to obtain non-zero-rare human activity patterns—the patterns which most occur in the motion sensor sequences and the occurrence numbers are less than the pre-defined occurrence threshold. This study proposes an algorithm to mine non-zero-rare pattern on human activity recognition called Mining Multi-class Non-Zero-Rare Sequential Patterns (MMRSP).  The experimental result showed that non-zero-rare human activity patterns succeed to capture the unusual activity. Furthermore, the MMRSP performed well according to the precision value of rare activities.\",\"PeriodicalId\":32704,\"journal\":{\"name\":\"Mantik Jurnal Matematika\",\"volume\":\"163 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mantik Jurnal Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15642/mantik.2019.5.1.1-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mantik Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15642/mantik.2019.5.1.1-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

发现罕见的人类活动模式——通过触发运动传感器传递特殊信息,通知人们危险情况。本研究旨在利用非零稀有序列模式挖掘技术识别稀有人类活动。特别地,本研究挖掘了触发的运动传感器序列,以获得非零罕见的人类活动模式-在运动传感器序列中出现最多的模式,并且出现次数小于预定义的出现阈值。本文提出了一种挖掘人类活动识别中非零稀有模式的算法——挖掘多类非零稀有序列模式(MMRSP)。实验结果表明,非零罕见人类活动模式成功捕获了异常活动。此外,根据稀有活动的精度值,MMRSP表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Non-Zero-Rare Sequential Patterns On Activity Recognition
Discovering rare human activity patterns—from triggered motion sensors deliver peculiar information to notify people about hazard situations. This study aims to recognize rare human activities using mining non-zero-rare sequential patterns technique. In particular, this study mines the triggered motion sensor sequences to obtain non-zero-rare human activity patterns—the patterns which most occur in the motion sensor sequences and the occurrence numbers are less than the pre-defined occurrence threshold. This study proposes an algorithm to mine non-zero-rare pattern on human activity recognition called Mining Multi-class Non-Zero-Rare Sequential Patterns (MMRSP).  The experimental result showed that non-zero-rare human activity patterns succeed to capture the unusual activity. Furthermore, the MMRSP performed well according to the precision value of rare activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信