通过相界工程研究batio3基压电陶瓷的超高转导系数

Chong Gao, X. Yan, Mupeng Zheng, Xin Gao, K. Zhao, Ling Li, M. Zhu, Y. Hou
{"title":"通过相界工程研究batio3基压电陶瓷的超高转导系数","authors":"Chong Gao, X. Yan, Mupeng Zheng, Xin Gao, K. Zhao, Ling Li, M. Zhu, Y. Hou","doi":"10.2139/ssrn.3919738","DOIUrl":null,"url":null,"abstract":"Transduction coefficient ( d33 × g33 ) is the core parameter for evaluating piezoelectric energy harvesting materials. However, due to the thermodynamic constraints, the synergistic variation between piezoelectric charge constant ( d33 ) and dielectric constant ( εr ) indeed hinder the further increase of d33 × g33 . Herein, an exceptionally high d33 ×g33 of 13167×10−15m2 /N was achieved in 0.80BaTiO3 -0.10CaTiO3 -0.10BaZrO3 (BC0.1ZT) lead-free solid solution for the first time through a phase boundary engineering strategy. The high d33 × g33 mainly stems from non-synergistic variation of dielectricity and piezoelectricity in a new R-O phase boundary , in which the low εr comes from the increased domain size and reduced domain wall density , while the high configurational sensitivity of the unique domains to external electric field contributed to the high d33 on the left side of polymorphic phase boundary (PPB). Our findings provide an alternative approach for enhanced energy harvesting performance by tracing the strategy of designing phase boundary to decouple d33 and εr .","PeriodicalId":18268,"journal":{"name":"Materials Engineering eJournal","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exceptionally High Transduction Coefficient in BaTiO 3-Based Piezoceramic Through Phase Boundary Engineering\",\"authors\":\"Chong Gao, X. Yan, Mupeng Zheng, Xin Gao, K. Zhao, Ling Li, M. Zhu, Y. Hou\",\"doi\":\"10.2139/ssrn.3919738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transduction coefficient ( d33 × g33 ) is the core parameter for evaluating piezoelectric energy harvesting materials. However, due to the thermodynamic constraints, the synergistic variation between piezoelectric charge constant ( d33 ) and dielectric constant ( εr ) indeed hinder the further increase of d33 × g33 . Herein, an exceptionally high d33 ×g33 of 13167×10−15m2 /N was achieved in 0.80BaTiO3 -0.10CaTiO3 -0.10BaZrO3 (BC0.1ZT) lead-free solid solution for the first time through a phase boundary engineering strategy. The high d33 × g33 mainly stems from non-synergistic variation of dielectricity and piezoelectricity in a new R-O phase boundary , in which the low εr comes from the increased domain size and reduced domain wall density , while the high configurational sensitivity of the unique domains to external electric field contributed to the high d33 on the left side of polymorphic phase boundary (PPB). Our findings provide an alternative approach for enhanced energy harvesting performance by tracing the strategy of designing phase boundary to decouple d33 and εr .\",\"PeriodicalId\":18268,\"journal\":{\"name\":\"Materials Engineering eJournal\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3919738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3919738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传导系数(d33 × g33)是评价压电能量收集材料的核心参数。然而,由于热力学约束,压电电荷常数(d33)和介电常数(εr)之间的协同变化确实阻碍了d33 × g33的进一步增加。通过相界工程策略,首次在0.80BaTiO3 -0.10CaTiO3 -0.10BaZrO3 (BC0.1ZT)无铅固溶体中获得了13167×10−15m2 /N的超高d33 ×g33。高的d33 × g33主要来自于新R-O相边界中介电和压电的非协同变化,其中低的εr来自于畴尺寸的增大和畴壁密度的减小,而独特畴对外电场的高构形灵敏度导致了多晶相边界(PPB)左侧的高d33。我们的研究结果通过跟踪设计相位边界来解耦d33和εr的策略,为提高能量收集性能提供了另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exceptionally High Transduction Coefficient in BaTiO 3-Based Piezoceramic Through Phase Boundary Engineering
Transduction coefficient ( d33 × g33 ) is the core parameter for evaluating piezoelectric energy harvesting materials. However, due to the thermodynamic constraints, the synergistic variation between piezoelectric charge constant ( d33 ) and dielectric constant ( εr ) indeed hinder the further increase of d33 × g33 . Herein, an exceptionally high d33 ×g33 of 13167×10−15m2 /N was achieved in 0.80BaTiO3 -0.10CaTiO3 -0.10BaZrO3 (BC0.1ZT) lead-free solid solution for the first time through a phase boundary engineering strategy. The high d33 × g33 mainly stems from non-synergistic variation of dielectricity and piezoelectricity in a new R-O phase boundary , in which the low εr comes from the increased domain size and reduced domain wall density , while the high configurational sensitivity of the unique domains to external electric field contributed to the high d33 on the left side of polymorphic phase boundary (PPB). Our findings provide an alternative approach for enhanced energy harvesting performance by tracing the strategy of designing phase boundary to decouple d33 and εr .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信