D. Ribeiro, Leonardo Souza, J. L. Paredes, P. Michon, Cyril Szakolczai
{"title":"泡沫水泥在深水井地面套管中的应用:法属圭亚那案例研究","authors":"D. Ribeiro, Leonardo Souza, J. L. Paredes, P. Michon, Cyril Szakolczai","doi":"10.2118/197190-ms","DOIUrl":null,"url":null,"abstract":"\n Lightweight or, alternatively, foamed cement slurries for surface casing operations are often necessary during special situations (i.e., low fracture gradients) for the required zone to be isolated. The foamed cement technique reduces the heat of hydration (HoH) of the slurries, reducing potential risk of shallow hydrate flow and losses because of its reduced hydrostatic pressure. This alternative for lightweight slurries has been used globally with successful results.\n The foamed cement operation was designed and executed considering specific aspects and details, including a combination of factors, such as expected low fracture gradient, mechanical property requirements, logistic constraints in terms of the difficulty managing two types of cement (large tonnage of Blend and G cement vs. rig capacity and safety volume requirements), long sections to be cemented, and the uncertainty of the cement volume excess necessary to achieve return in the seabed. Because this was the first cement operation for the operator at this remote deepwater field, the planning phase required extensive discussions. Rig silo capacities and deck space on the rig were limited, which constrained the possibility of considering backup for all bulks, chemicals, and equipment.\n Execution of the cement operation was as per the approved program without deviation. The cement volume returned at seabed indicated an openhole diameter with ±100% washout. A tracer additive (fluorescent dye) mixed with the spacer was successfully used to indicate fluid return at seabed (2120-m water depth). As part of the best practices to execute this operation, a liquid additive system was used to provide pump volume flexibility. Foamed cement laboratory tests were performed, considering field samples and the foaming agent (surfactant) were injected straight at the suction of the pump. As expected, the foamed cement operation is an extremely efficient and effective technique to achieve zonal isolation in a surface casing string of a deepwater well. Currently, this procedure is frequently used in fields globally. A case study of the first foamed cement application for surface casing in French Guiana is discussed.","PeriodicalId":11328,"journal":{"name":"Day 4 Thu, November 14, 2019","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying a Foamed Cement Operation for Surface Casing in a Deepwater Well: Case Study, French Guiana\",\"authors\":\"D. Ribeiro, Leonardo Souza, J. L. Paredes, P. Michon, Cyril Szakolczai\",\"doi\":\"10.2118/197190-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Lightweight or, alternatively, foamed cement slurries for surface casing operations are often necessary during special situations (i.e., low fracture gradients) for the required zone to be isolated. The foamed cement technique reduces the heat of hydration (HoH) of the slurries, reducing potential risk of shallow hydrate flow and losses because of its reduced hydrostatic pressure. This alternative for lightweight slurries has been used globally with successful results.\\n The foamed cement operation was designed and executed considering specific aspects and details, including a combination of factors, such as expected low fracture gradient, mechanical property requirements, logistic constraints in terms of the difficulty managing two types of cement (large tonnage of Blend and G cement vs. rig capacity and safety volume requirements), long sections to be cemented, and the uncertainty of the cement volume excess necessary to achieve return in the seabed. Because this was the first cement operation for the operator at this remote deepwater field, the planning phase required extensive discussions. Rig silo capacities and deck space on the rig were limited, which constrained the possibility of considering backup for all bulks, chemicals, and equipment.\\n Execution of the cement operation was as per the approved program without deviation. The cement volume returned at seabed indicated an openhole diameter with ±100% washout. A tracer additive (fluorescent dye) mixed with the spacer was successfully used to indicate fluid return at seabed (2120-m water depth). As part of the best practices to execute this operation, a liquid additive system was used to provide pump volume flexibility. Foamed cement laboratory tests were performed, considering field samples and the foaming agent (surfactant) were injected straight at the suction of the pump. As expected, the foamed cement operation is an extremely efficient and effective technique to achieve zonal isolation in a surface casing string of a deepwater well. Currently, this procedure is frequently used in fields globally. A case study of the first foamed cement application for surface casing in French Guiana is discussed.\",\"PeriodicalId\":11328,\"journal\":{\"name\":\"Day 4 Thu, November 14, 2019\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, November 14, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197190-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197190-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applying a Foamed Cement Operation for Surface Casing in a Deepwater Well: Case Study, French Guiana
Lightweight or, alternatively, foamed cement slurries for surface casing operations are often necessary during special situations (i.e., low fracture gradients) for the required zone to be isolated. The foamed cement technique reduces the heat of hydration (HoH) of the slurries, reducing potential risk of shallow hydrate flow and losses because of its reduced hydrostatic pressure. This alternative for lightweight slurries has been used globally with successful results.
The foamed cement operation was designed and executed considering specific aspects and details, including a combination of factors, such as expected low fracture gradient, mechanical property requirements, logistic constraints in terms of the difficulty managing two types of cement (large tonnage of Blend and G cement vs. rig capacity and safety volume requirements), long sections to be cemented, and the uncertainty of the cement volume excess necessary to achieve return in the seabed. Because this was the first cement operation for the operator at this remote deepwater field, the planning phase required extensive discussions. Rig silo capacities and deck space on the rig were limited, which constrained the possibility of considering backup for all bulks, chemicals, and equipment.
Execution of the cement operation was as per the approved program without deviation. The cement volume returned at seabed indicated an openhole diameter with ±100% washout. A tracer additive (fluorescent dye) mixed with the spacer was successfully used to indicate fluid return at seabed (2120-m water depth). As part of the best practices to execute this operation, a liquid additive system was used to provide pump volume flexibility. Foamed cement laboratory tests were performed, considering field samples and the foaming agent (surfactant) were injected straight at the suction of the pump. As expected, the foamed cement operation is an extremely efficient and effective technique to achieve zonal isolation in a surface casing string of a deepwater well. Currently, this procedure is frequently used in fields globally. A case study of the first foamed cement application for surface casing in French Guiana is discussed.