人工神经网络在高熵合金热变形行为研究中的适用性

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. R. Zamani, H. Mirzadeh, M. Malekan
{"title":"人工神经网络在高熵合金热变形行为研究中的适用性","authors":"M. R. Zamani, H. Mirzadeh, M. Malekan","doi":"10.1080/02670836.2023.2231767","DOIUrl":null,"url":null,"abstract":"The potentials of artificial neural network (ANN) modelling as a potent machine learning approach for investigating the hot deformation behaviour of high-entropy alloys (HEAs) and multi-principal element alloys during thermomechanical processing are assessed and reviewed. Flow stress of CoCrFeNiMn (FCC Cantor alloy), HfNbTaTiZr (BCC refractory alloy), AlCoCuFeNi, and Al x CoCrFeNi alloys is accurately predicted based on the deformation temperature, strain rate, and strain. Moreover, in comparison with the limited experimental dataset, a significantly larger output dataset can be generated by ANN to gain valuable insights such as prediction of flow stress (and whole dynamic recovery/recrystallisation flow curves), elucidating the microstructural mechanisms such as dynamic precipitation reactions, and obtaining hot working parameters (e.g. deformation activation energy) for different ranges of deformation conditions.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"24 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural network applicability in studying hot deformation behaviour of high-entropy alloys\",\"authors\":\"M. R. Zamani, H. Mirzadeh, M. Malekan\",\"doi\":\"10.1080/02670836.2023.2231767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potentials of artificial neural network (ANN) modelling as a potent machine learning approach for investigating the hot deformation behaviour of high-entropy alloys (HEAs) and multi-principal element alloys during thermomechanical processing are assessed and reviewed. Flow stress of CoCrFeNiMn (FCC Cantor alloy), HfNbTaTiZr (BCC refractory alloy), AlCoCuFeNi, and Al x CoCrFeNi alloys is accurately predicted based on the deformation temperature, strain rate, and strain. Moreover, in comparison with the limited experimental dataset, a significantly larger output dataset can be generated by ANN to gain valuable insights such as prediction of flow stress (and whole dynamic recovery/recrystallisation flow curves), elucidating the microstructural mechanisms such as dynamic precipitation reactions, and obtaining hot working parameters (e.g. deformation activation energy) for different ranges of deformation conditions.\",\"PeriodicalId\":18232,\"journal\":{\"name\":\"Materials Science and Technology\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670836.2023.2231767\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2231767","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural network applicability in studying hot deformation behaviour of high-entropy alloys
The potentials of artificial neural network (ANN) modelling as a potent machine learning approach for investigating the hot deformation behaviour of high-entropy alloys (HEAs) and multi-principal element alloys during thermomechanical processing are assessed and reviewed. Flow stress of CoCrFeNiMn (FCC Cantor alloy), HfNbTaTiZr (BCC refractory alloy), AlCoCuFeNi, and Al x CoCrFeNi alloys is accurately predicted based on the deformation temperature, strain rate, and strain. Moreover, in comparison with the limited experimental dataset, a significantly larger output dataset can be generated by ANN to gain valuable insights such as prediction of flow stress (and whole dynamic recovery/recrystallisation flow curves), elucidating the microstructural mechanisms such as dynamic precipitation reactions, and obtaining hot working parameters (e.g. deformation activation energy) for different ranges of deformation conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Technology
Materials Science and Technology 工程技术-材料科学:综合
CiteScore
2.70
自引率
5.60%
发文量
0
审稿时长
3 months
期刊介绍: 《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信