K. Indriawati, Gabriel Fransisco Yugoputra, Noviarizqoh Nurul Habibah, Risma Yudhanto
{"title":"基于残余分析方法的人工神经网络离心泵故障检测系统研究","authors":"K. Indriawati, Gabriel Fransisco Yugoputra, Noviarizqoh Nurul Habibah, Risma Yudhanto","doi":"10.15282/ijame.20.1.2023.10.0795","DOIUrl":null,"url":null,"abstract":"Centrifugal pump is an instrument that is widely used in industry and has become the main driving component. A detection system is often needed to prevent damage to these pumps because they can interfere with the overall system performance. Therefore, this study discussed the development of a fault detection system for two centrifugal pump units, namely the Medium Pressure Oil Pump (MPOP) and the Water Injection Pump (WIP). In detecting the operating conditions of the pump, it was used a residual feature extraction technique in the time domain with a statistical approach. Residual was generated by using three sub-systems of a pumping system. Each sub-system was modeled using an artificial neural network with feedforward-back propagation architecture. Based on the feature values, the classifier was designed to classify pump conditions. Then the proposed fault detection system was applied in a condition monitoring system scheme. The test results (using data from the field) show that the fault detection system has an accuracy of 91.67% for MPOP and 94.8% for WIP cases. Meanwhile, the fault detection system has an accuracy above 99% during online monitoring simulations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Neural Network-Based Fault Detection System with Residual Analysis Approach on Centrifugal Pump: A Case Study\",\"authors\":\"K. Indriawati, Gabriel Fransisco Yugoputra, Noviarizqoh Nurul Habibah, Risma Yudhanto\",\"doi\":\"10.15282/ijame.20.1.2023.10.0795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Centrifugal pump is an instrument that is widely used in industry and has become the main driving component. A detection system is often needed to prevent damage to these pumps because they can interfere with the overall system performance. Therefore, this study discussed the development of a fault detection system for two centrifugal pump units, namely the Medium Pressure Oil Pump (MPOP) and the Water Injection Pump (WIP). In detecting the operating conditions of the pump, it was used a residual feature extraction technique in the time domain with a statistical approach. Residual was generated by using three sub-systems of a pumping system. Each sub-system was modeled using an artificial neural network with feedforward-back propagation architecture. Based on the feature values, the classifier was designed to classify pump conditions. Then the proposed fault detection system was applied in a condition monitoring system scheme. The test results (using data from the field) show that the fault detection system has an accuracy of 91.67% for MPOP and 94.8% for WIP cases. Meanwhile, the fault detection system has an accuracy above 99% during online monitoring simulations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.20.1.2023.10.0795\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.1.2023.10.0795","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Artificial Neural Network-Based Fault Detection System with Residual Analysis Approach on Centrifugal Pump: A Case Study
Centrifugal pump is an instrument that is widely used in industry and has become the main driving component. A detection system is often needed to prevent damage to these pumps because they can interfere with the overall system performance. Therefore, this study discussed the development of a fault detection system for two centrifugal pump units, namely the Medium Pressure Oil Pump (MPOP) and the Water Injection Pump (WIP). In detecting the operating conditions of the pump, it was used a residual feature extraction technique in the time domain with a statistical approach. Residual was generated by using three sub-systems of a pumping system. Each sub-system was modeled using an artificial neural network with feedforward-back propagation architecture. Based on the feature values, the classifier was designed to classify pump conditions. Then the proposed fault detection system was applied in a condition monitoring system scheme. The test results (using data from the field) show that the fault detection system has an accuracy of 91.67% for MPOP and 94.8% for WIP cases. Meanwhile, the fault detection system has an accuracy above 99% during online monitoring simulations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.