元素的子群、次正规和相对序的乘积

IF 0.6 3区 数学 Q3 MATHEMATICS
Luca Sabatini
{"title":"元素的子群、次正规和相对序的乘积","authors":"Luca Sabatini","doi":"10.26493/1855-3974.2975.1b2","DOIUrl":null,"url":null,"abstract":"Let $G$ be a group. We give an explicit description of the set of elements $x \\in G$ such that $x^{|G:H|} \\in H$ for every subgroup of finite index $H \\leqslant G$. This is related to the following problem: given two subgroups $H$ and $K$, with $H$ of finite index, when does $|HK:H|$ divide $|G:H|$?","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Products of subgroups, subnormality, and relative orders of elements\",\"authors\":\"Luca Sabatini\",\"doi\":\"10.26493/1855-3974.2975.1b2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a group. We give an explicit description of the set of elements $x \\\\in G$ such that $x^{|G:H|} \\\\in H$ for every subgroup of finite index $H \\\\leqslant G$. This is related to the following problem: given two subgroups $H$ and $K$, with $H$ of finite index, when does $|HK:H|$ divide $|G:H|$?\",\"PeriodicalId\":49239,\"journal\":{\"name\":\"Ars Mathematica Contemporanea\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Mathematica Contemporanea\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2975.1b2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.26493/1855-3974.2975.1b2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让$G$成为一个团体。我们给出了元素集合$x \in G$的显式描述,使得$x^{|G:H|} \in H$对于有限索引$H \leqslant G$的每一子群。这涉及到以下问题:给定两个子群$H$和$K$, $H$的索引是有限的,$|HK:H|$何时能除$|G:H|$ ?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Products of subgroups, subnormality, and relative orders of elements
Let $G$ be a group. We give an explicit description of the set of elements $x \in G$ such that $x^{|G:H|} \in H$ for every subgroup of finite index $H \leqslant G$. This is related to the following problem: given two subgroups $H$ and $K$, with $H$ of finite index, when does $|HK:H|$ divide $|G:H|$?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ars Mathematica Contemporanea
Ars Mathematica Contemporanea MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信