最小代价生成树情形的义务规则及其单调性

S. Tijs, R. Branzei, Stefano Moretti, H. Norde
{"title":"最小代价生成树情形的义务规则及其单调性","authors":"S. Tijs, R. Branzei, Stefano Moretti, H. Norde","doi":"10.2139/ssrn.567147","DOIUrl":null,"url":null,"abstract":"We introduce the class of Obligation rules for minimum cost spanning tree situations.The main result of this paper is that such rules are cost monotonic and induce also population monotonic allocation schemes.Another characteristic of Obligation rules is that they assign to a minimum cost spanning tree situation a vector of cost contributions which can be obtained as product of a double stochastic matrix with the cost vector of edges in the optimal tree provided by the Kruskal algorithm.It turns out that the Potters value (P-value) is an element of this class.","PeriodicalId":92040,"journal":{"name":"ICU management & practice","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Obligation Rules for Minimum Cost Spanning Tree Situations and Their Monotonicity Properties\",\"authors\":\"S. Tijs, R. Branzei, Stefano Moretti, H. Norde\",\"doi\":\"10.2139/ssrn.567147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the class of Obligation rules for minimum cost spanning tree situations.The main result of this paper is that such rules are cost monotonic and induce also population monotonic allocation schemes.Another characteristic of Obligation rules is that they assign to a minimum cost spanning tree situation a vector of cost contributions which can be obtained as product of a double stochastic matrix with the cost vector of edges in the optimal tree provided by the Kruskal algorithm.It turns out that the Potters value (P-value) is an element of this class.\",\"PeriodicalId\":92040,\"journal\":{\"name\":\"ICU management & practice\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICU management & practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.567147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICU management & practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.567147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

我们引入了最小代价生成树情形下的一类义务规则。本文的主要结果是这些规则是成本单调的,并且也推导出种群单调的分配方案。义务规则的另一个特点是,它将代价贡献向量分配给最小代价生成树的情况,该向量可以作为双随机矩阵与Kruskal算法提供的最优树中边的代价向量的乘积得到。事实证明,波特值(p值)是这类的一个元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obligation Rules for Minimum Cost Spanning Tree Situations and Their Monotonicity Properties
We introduce the class of Obligation rules for minimum cost spanning tree situations.The main result of this paper is that such rules are cost monotonic and induce also population monotonic allocation schemes.Another characteristic of Obligation rules is that they assign to a minimum cost spanning tree situation a vector of cost contributions which can be obtained as product of a double stochastic matrix with the cost vector of edges in the optimal tree provided by the Kruskal algorithm.It turns out that the Potters value (P-value) is an element of this class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信